Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(5): 333, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210387

RESUMO

Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Inibidores de Proteassoma , Proteostase , Humanos , Calnexina/metabolismo , Sobrevivência Celular , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/metabolismo
2.
Genes (Basel) ; 14(3)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981005

RESUMO

As an important member of the kindlin family, fermitin family member 1 (FERMT1) can interact with integrin and its aberrant expression involves multiple tumors. However, there are few systematic studies on FERMT1 in pancreatic carcinoma (PAAD). We used several public databases to analyze the expression level and clinicopathological characteristics of FERMT1 in PAAD. Meanwhile, the correlation between FERMT1 expression and diagnostic and prognostic value, methylation, potential biological function, immune infiltration, and sensitivity to chemotherapy drugs in PAAD patients were investigated. FERMT1 was significantly up-regulated in PAAD and correlated with T stage, and histologic grade. High FERMT1 expression was closely connected with poor prognosis and can be used to diagnose PAAD. Moreover, the methylation of six CpG sites of FERMT1 was linked to prognosis, and FERMT1 expression was significantly related to N6-methyladenosine (m6A) modification. Functional enrichment analysis revealed that FERMT1 co-expression genes participated in diverse biological functions including necroptosis. In addition, the expression of FERMT1 was associated with immune cell infiltration and the expression of immune checkpoint molecules. Finally, FERMT1 overexpression may be sensitive to chemotherapy drugs such as Palbociclib, AM-5992 and TAE-226. FERMT1 can serve as a diagnostic and prognostic marker of PAAD, which is connected with immune cell infiltration and the modulation of m6A and necroptosis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Necroptose , Prognóstico , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas
3.
J Immunol Res ; 2022: 2253436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785030

RESUMO

Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy.


Assuntos
Artemisininas , Neoplasias Hepáticas , Melanoma , Células Supressoras Mieloides , Animais , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Antígeno B7-H1 , Fatores Imunológicos , Imunoterapia , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Microambiente Tumoral
4.
Front Immunol ; 13: 781660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140716

RESUMO

Immunotherapy has emerged as a promising approach to combat immunosuppressive tumor microenvironment (TME) for improved cancer treatment. FDA approval for the clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients respond to this treatment due to several factors including the accumulation of immunosuppressive cells in the TME. Several immunosuppressive cells within the TME such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the activation and function of T cells to promote tumor progression. The roles of epigenetic modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but little is known about their impact on immune cells. Recent studies showed inhibiting HDAC expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted current challenges and future perspectives of HDAC inhibitors in regulating MDSCs function for effective cancer immunotherapy.


Assuntos
Histona Desacetilases/metabolismo , Imunomodulação , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Biomarcadores Tumorais , Epigênese Genética , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Imunoterapia
5.
Front Oncol ; 11: 755188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938655

RESUMO

BACKGROUND: Despite much improvement in the treatment for acute lymphoblastic leukemia (ALL), childhood ALLs with MLL-rearrangement (MLL-r) still have inferior dismal prognosis. Thus, defining mechanisms underlying MLL-r ALL maintenance is critical for developing effective therapy. METHODS: GSE13159 and GSE28497 were selected via the Oncomine website. Differentially expressed genes (DEGs) between MLL-r ALLs and normal samples were identified by R software. Next, functional enrichment analysis of these DEGs were carried out by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Then, the key hub genes and modules were identified by Weighted Gene Co-expression Network Analysis (WGCNA). Therapeutically Applicable Research to Generate Effective Treatments (TARGET) ALL (Phase I) of UCSC Xena analysis, qPCR, and Kaplan-Meier analysis were conducted for validating the expression of key hub genes from bone marrow cells of childhood ALL patients or ALL cell lines. RESULTS: A total of 1,045 DEGs were identified from GSE13159 and GSE28497. Through GO, KEGG, GSEA, and STRING analysis, we demonstrated that MLL-r ALLs were upregulating "nucleosome assembly" and "B cell receptor signal pathway" genes or proteins. WGCNA analysis found 18 gene modules using hierarchical clustering between MLL-r ALLs and normal. The Venn diagram was used to filter the 98 hub genes found in the key module with the 1,045 DEGs. We identified 18 hub genes from this process, 9 of which were found to be correlated with MLL-r status, using the UCSC Xena analysis. By using qPCR, we validated these 9 hub key genes to be upregulated in the MLL-r ALLs (RS4;11 and SEM) compared to the non-MLL-r ALL (RCH-ACV) cell lines. Three of these genes, BCL11A, GLT8D1 and NCBP2, were shown to be increased in MLL-r ALL patient bone marrows compared to the non-MLL-r ALL patient. Finally, Kaplan-Meier analysis indicated that childhood ALL patients with high BCL11A expression had significantly poor overall survival. CONCLUSION: These findings suggest that upregulated BCL11A gene expression in childhood ALLs may lead to MLL-r ALL development and BCL11A represents a new potential therapeutic target for childhood MLL-r ALL.

6.
Front Immunol ; 12: 701671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531855

RESUMO

Histone deacetylases (HDAC) are frequently overexpressed in tumors, and their inhibition has shown promising anti-tumor effects. However, the synergistic effects of HDAC inhibition with immune cell therapy have not been fully explored. Natural killer (NK) cells are cytotoxic lymphocytes for anti-tumor immune surveillance, with immunotherapy potential. We showed that a pan-HDAC inhibitor, panobinostat, alone demonstrated anti-tumor and anti-proliferative activities on all tested tumors in vitro. Additionally, panobinostat co-treatment or pretreatment synergized with NK cells to mediate tumor cell cytolysis. Mechanistically, panobinostat treatment increased the expression of cell adhesion and tight junction-related genes, promoted conjugation formation between NK and tumor cells, and modulates NK cell-activating receptors and ligands on tumor cells, contributing to the increased tumor cytolysis. Finally, panobinostat therapy led to better tumor control and synergized with anti-PD-L1 therapy. Our data highlights the anti-tumor potential of HDAC inhibition through tumor-intrinsic toxicity and enhancement of NK -based immunotherapy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Panobinostat/farmacologia , Animais , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Células Hep G2 , Humanos , Vigilância Imunológica/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Junções Íntimas/efeitos dos fármacos
7.
J Cancer ; 12(16): 4819-4829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234852

RESUMO

Most cancer mortality results from metastatic tumor cells and not the localized tumor. Overcoming anoikis is one of the most important steps for detached tumor cells to migrate and metastasize. However, the molecular mechanisms remain to be fully deciphered. Herein, our study revealed upregulation of vacuolar ATPase (V-ATPase) in cancer cells during ECM detachment plays a key role in anoikis evasion. V-ATPase is an enzyme complex that utilizes energy from ATP hydrolysis to maintain cellular homeostasis and had been reported to enhance cancer progression. In this study, V-ATPase inhibition sensitized human cervical cancer, breast cancer, and murine melanoma cells to anoikis via increased ROS production, accumulation of misfolded protein, and impaired pulmonary metastasis in vivo. Scavenging ROS restored anoikis resistance and clearance of misfolded protein accumulation in the tumor cells. Mechanistically, STAT3 upregulates V-ATPase expression while blockade of STAT3 activity repressed V-ATPase expression in these tumor cells as well as sensitized cells to anoikis, increased ROS production, and misfolded protein accumulation. Altogether, our data demonstrate an unreported role of STAT3 in mediating the upregulation of V-ATPase to promote anoikis resistance, thus provides an alternative option to target cancer metastasis.

8.
Clin Transl Immunology ; 10(6): e1286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188916

RESUMO

The discovery of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) technology has brought advances in the genetic manipulation of eukaryotic cells, which has revolutionised cancer research and treatment options. It is increasingly being used in cancer immunotherapy, including adoptive T and natural killer (NK) cell transfer, secretion of antibodies, cytokine stimulation and overcoming immune checkpoints. CRISPR-Cas9 technology is used in autologous T cells and NK cells to express various innovative antigen designs and combinations of chimeric antigen receptors (CARs) targeted at specific antigens for haematological and solid tumors. Additionally, advanced engineering in immune cells to enhance their sensing circuits with sophisticated functionality is now possible. Intensive research on the CRISPR-Cas9 system has provided scientists with the ability to overcome the hostile tumor microenvironment and generate more products for future clinical use, especially off-the-shelf, universal cellular products, bringing exciting milestones for immunotherapy. This review discussed the application and challenges of CRISPR technology in cancer research and immunotherapy, its advances and prospects for promoting new cell-based therapeutic beyond immune oncology.

9.
Front Oncol ; 11: 626577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854965

RESUMO

The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure-function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through "anoikis." However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.

10.
Data Brief ; 35: 106882, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665270

RESUMO

The regulation of myeloid-derived suppressor cells (MDSCs) function is key for effective tumor immunotherapy. Recent lipidomics data revealed that MDSCs accumulate lipid species thereby promote their immunosuppressive activity on T cells. However, genetic manipulation of fatty acid transport protein 2 in mice reduced lipid accumulation in polymorphonuclear MDSCs. Herein we present for the first time lipidome of splenic MDSCs from B16F10 melanoma-bearing mice treated with FATP2 inhibitor - lipofermata compared to the control group. B16F10 were subcutaneously injected into the left flank of wild-type C57BL/6 mice, either lipofermata or vehicle was administered to the mice every day starting from day 7 post-tumor injection for 2 weeks. CD11b+Gr1+ cells from the spleen referred to as MDSCs were sorted on a flow cytometer machine for lipid extraction. Lipid was extracted using methyl­tert­butyl ether as previously described with slight modification, followed by liquid chromatography-mass spectrophotometry lipid profiling using a Q-Exactive instrument coupled with HPLC. The raw scans were identified and quantified with LipidSearch while raw data for various lipid species available on the Mendeley Data repository [1]. The lipid profiles reveal change in lipid species following blockade of FATP2 expression in MDSCs compared to the control. These data were collected in connection to a co-submitted paper [2].

11.
Cell Immunol ; 362: 104286, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524739

RESUMO

Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy against the PD-1/PD-L1 axis, it induces sustained responses in a sizeable minority of cancer patients due to the activation of immunosuppressive factors such as myeloid-derived suppressor cells (MDSCs). Inhibiting the immunosuppressive function of MDSCs is critical for successful cancer ICB therapy. Interestingly, lipid metabolism is a crucial factor in modulating MDSCs function. Fatty acid transport protein 2 (FATP2) conferred the function of PMN-MDSCs in cancer via the upregulation of arachidonic acid metabolism. However, whether regulating lipid accumulation in MDSCs by targeting FATP2 could block MDSCs reactive oxygen species (ROS) production and enhance PD-L1 blockade-mediated tumor immunotherapy remains unexplored. Here we report that FATP2 regulated lipid accumulation, ROS, and immunosuppressive function of MDSCs in tumor-bearing mice. Tumor cells-derived granulocyte macrophage-colony stimulating factor (GM-CSF) induced FATP2 expression in MDSCs by activation of STAT3 signaling pathway. Pharmaceutical blockade of FATP2 expression in MDSCs by lipofermata decreased lipid accumulation, reduced ROS, blocked immunosuppressive activity, and consequently inhibited tumor growth. More importantly, lipofermata inhibition of FATP2 in MDSCs enhanced anti-PD-L1 tumor immunotherapy via the upregulation of CD107a and reduced PD-L1 expression on tumor-infiltrating CD8+T-cells. Furthermore, the combination therapy blocked MDSC's suppressive role on T- cells thereby enhanced T-cell's ability for the production of IFN-γ. These findings indicate that FATP2 plays a key role in modulating lipid accumulation-induced ROS in MDSCs and targeting FATP2 in MDSCs provides a novel therapeutic approach to enhance anti-PD-L1 cancer immunotherapy.


Assuntos
Coenzima A Ligases/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , China , Coenzima A Ligases/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3 , Transdução de Sinais , Compostos de Espiro/farmacologia , Linfócitos T/imunologia , Tiadiazóis/farmacologia
12.
Life (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35054435

RESUMO

Metastasis arises owing to tumor cells' capacity to evade pro-apoptotic signals. Anoikis-the apoptosis of detached cells (from the extracellular matrix (ECM)) is often circumvented by metastatic cells as a result of biochemical and molecular transformations. These facilitate cells' ability to survive, invade and reattach to secondary sites. Here, we identified deregulated glucose metabolism, oxidative phosphorylation, and proteasome in anchorage-independent cells compared to adherent cells. Metformin an anti-diabetic drug that reduces blood glucose (also known to inhibit mitochondrial Complex I), and proteasome inhibitors were employed to target these changes. Metformin or proteasome inhibitors alone increased misfolded protein accumulation, sensitized tumor cells to anoikis, and impaired pulmonary metastasis in the B16F10 melanoma model. Mechanistically, metformin reduced cellular ATP production, activated AMPK to foster pro-apoptotic unfolded protein response (UPR) through enhanced expression of CHOP in ECM detached cells. Furthermore, AMPK inhibition reduced misfolded protein accumulation, thus highlight relevance of AMPK activation in facilitating metformin-induced stress and UPR cell death. Our findings provide insights into the molecular biology of anoikis resistance and identified metformin and proteasome inhibitors as potential therapeutic options for tumor metastasis.

13.
Mol Immunol ; 129: 94-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223223

RESUMO

Immune evasion is a common hallmark of cancers. Immunotherapies that aim at restoring or increasing the immune response against cancers have revolutionized outcomes for patients, but the mechanisms of resistance remain poorly defined. Here, we report that CD317, a surface molecule with a unique topology that is double anchored into the membrane, protects tumor cells from immunocytolysis. CD317 knockdown in tumor cells renders more severe death in response to NK or chimeric antigen receptor-modified NK cells challenge. Such effects of CD317 silencing might be the results of increasing sensitivity of tumor cells to immune killing rather than strengthening immune response, since neither effector-target cell contact nor the activation of effector cells was affected, and the enhanced cytolysis was also not counteracted by the addition of recombinant CD317 proteins. Mechanistically, CD317 might endow tumor cells with more flexibility to modulate cytoskeleton through its association with RICH2, thereby protects membrane integrity against perforin and consequently promotes survival in response to immunocytolysis. These results reveal a new mechanism of immunocytolysis resistance and suggest CD317 as an attractive target which can be exploited for improving the efficacy of cancer immunotherapies.


Assuntos
Antígenos CD/imunologia , Citoesqueleto/imunologia , Proteínas Ativadoras de GTPase/imunologia , Membranas/imunologia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/imunologia , Células HeLa , Células Hep G2 , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células MCF-7 , Neoplasias/imunologia , Proteínas Recombinantes/imunologia
14.
Biochem Biophys Res Commun ; 522(3): 604-611, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31785814

RESUMO

Regardless of the remarkable clinical success of immune checkpoint blockade (ICB) against PD-1/PD-L1 pathway, this approach has encountered drawbacks in most patients due to the activation of tumor immunosuppressive factors such as myeloid-derived suppressor cells (MDSCs). Histone deacetylase (HDAC) inhibitors combat ICB resistance by attenuating the immunosuppressive function of MDSCs and increasing PD-L1 expression on tumor cells. However, whether an HDAC inhibitor - valproic acid (VPA) suppression of MDSCs function could enhance PD-L1 blockade-mediated tumor immunotherapy remains unknown. Here we report that VPA and anti-PD-L1 antibody combined treatment promoted the polarization of bone marrow-derived precursor cells into M-MDSCs. Interestingly, the combination treatment of VPA and anti-PD-L1 antibody activated IRF1/IRF8 transcriptional axis in MDSCs leading to blockade of their immunosuppressive function by downregulating the expression of IL-10, IL-6, and ARG1 while re-activating CD8+ T-cells for the production of TNFα to further enhance anti-tumor immunity. These observations provide further rationale for the combination therapy of VPA with anti-PD-L1 antibody in preclinical settings.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias/terapia , Ácido Valproico/uso terapêutico , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165583, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676378

RESUMO

Acetaminophen (APAP) is one of the most commonly used drugs worldwide, and APAP-induced liver injury is the most frequent cause of acute liver failure in developed countries. However, the mechanisms of APAP-induced hepatotoxicity are not well understood, and treatment options for the disorder are very limited. Here, we show that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a major mediator of APAP-induced liver injury in mice, and its blockade markedly ameliorates the liver failure. In APAP-treated mice, TRAIL was expressed in the liver, spleen, and peripheral blood primarily by CD11b+Gr1+ neutrophils. The concentration of soluble TRAIL in the blood, and the frequencies of TRAIL+ leukocytes in the spleen and liver positively correlated with the severity of liver injury. APAP sensitized hepatocytes to TRAIL-induced apoptosis by upregulating the expression of the TRAIL receptor DR5 (death receptor 5), presumably through its transcription factor CHOP (C/EBP homologous protein). Importantly, blocking TRAIL with a soluble DR5-Fc fusion protein (sDR5-Fc) significantly attenuated APAP-induced liver injury, the hepatic infiltration of leukocytes, the levels of inflammatory cytokines, and the mortality of mice. When administered alongside N-acetylcysteine, sDR5-Fc further protected against APAP-induced acute liver injury. Thus, the TRAIL-DR5 signaling pathway plays a key role in APAP-induced liver inflammation and failure, and its blockade represents an effective new strategy to treat the liver disease.


Assuntos
Acetaminofen/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Acetilcisteína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Citocinas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado , Falência Hepática/induzido quimicamente , Falência Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
J Exp Med ; 217(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31662347

RESUMO

Myeloid-derived suppressor cells (MDSCs) are "polarized" myeloid cells that effectively promote tumorigenesis by inhibiting antitumor immunity. How myeloid cells acquire the protumoral properties during tumorigenesis is poorly understood. We report here that the polarity protein TIPE2 (tumor necrosis factor-α-induced protein 8-like 2) mediates the functional polarization of murine and human MDSCs by specifying their pro- and antitumoral properties. Tumor cells induced the expression of TIPE2 in Gr1+CD11b+ cells through reactive oxygen species (ROS). TIPE2 in turn increased the expression of protumoral mediators such as CCAAT/enhancer-binding protein-ß while inhibiting the expression of antitumoral mediators. Consequently, tumor growth in TIPE2-deficient mice was significantly diminished, and TIPE2-deficient MDSCs markedly inhibited tumor growth upon adoptive transfer. Pharmaceutical blockade of ROS inhibited TIPE2 expression in MDSCs and reduced tumor growth in mice. These findings indicate that TIPE2 plays a key role in the functional polarization of MDSCs and represents a new therapeutic target for cancer immunotherapy.


Assuntos
Carcinogênese/metabolismo , Polaridade Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/sangue , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Transferência Adotiva , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/patologia , Lisina/análogos & derivados , Lisina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Células Supressoras Mieloides , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
17.
Front Immunol ; 10: 1399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275326

RESUMO

Myeloid-derived suppressor cells (MDSCs) play crucial roles in tumorigenesis and their inhibition is critical for successful cancer immunotherapy. MDSCs undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation led by lipid accumulation in tumor. Increased exogenous fatty acid uptake by tumor MDSCs enhance their immunosuppressive activity on T-cells thus promoting tumor progression. Tumor-infiltrating MDSCs in mice may prefer FAO over glycolysis as a primary source of energy while treatment with FAO inhibitors improved anti-tumor immunity. This review highlights the immunosuppressive functions of lipid metabolism and its signaling pathways on MDSCs in the tumor microenvironment. The manipulation of these pathways in MDSCs is relevant to understand the tumor microenvironment therefore, could provide novel therapeutic approaches to enhance cancer immunotherapy.


Assuntos
Imunomodulação , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Biomarcadores , Metabolismo Energético , Humanos , Oxirredução , Fosforilação Oxidativa , Transdução de Sinais , Microambiente Tumoral/imunologia
18.
Biochem Biophys Res Commun ; 483(1): 669-673, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27988336

RESUMO

IgE is a key effector molecule in atopic diseases; however, the regulation mechanisms of IgE production in IgE B cells remain poorly understood. In the present study, we demonstrate that JSI-124 (cucurbitacin I), a selective STAT3 inhibitor, selectively inhibits production of IgE by a human IgE B cell line, CRL-8033 cells, while does not affect the IgG production by IgG B cell lines. In the aspect of molecular mechanism, we found that Igλ, but not Ighe, gene expression was suppressed by JSI-124. The above effects of JSI-124 were not mediated by affecting cellular proliferation or apoptosis. Furthermore, multiple B cell differentiation-related genes expression was not significantly affected by JSI-124. Taken together, we demonstrate a potential strategy of therapeutically suppressing IgE production without affecting IgG production in atopic patients.


Assuntos
Linfócitos B/efeitos dos fármacos , Imunoglobulina E/biossíntese , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Expressão Gênica/efeitos dos fármacos , Genes de Imunoglobulinas/efeitos dos fármacos , Humanos , Imunoglobulina E/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Fator de Transcrição STAT3/antagonistas & inibidores
19.
Eur J Immunol ; 43(11): 2943-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23897117

RESUMO

Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects that could prove beneficial in clinical therapies for certain autoimmune and inflammatory disorders. However, the mechanism of PUFA-mediated immunosuppression is far from understood. Here, we provide evidence that PUFAs enhance the accumulation of myeloid-derived suppressor cells (MDSCs), a negative immune regulator. PUFA-induced MDSCs have a more potent suppressive effect on T-cell responses than do control MDSCs. These observations were found both in cultured mouse bone marrow cells in vitro and in vivo in mice fed diets enriched in PUFAs. The enhanced suppressive activity of MDSCs by PUFAs administration was coupled with a dramatic induction of nicotinamide adenine dinucleo- tide phosphate oxidase subunit p47(phox) and was dependent on reactive oxygen species (ROS) production. Mechanistic studies revealed that PUFAs mediate its effects through JAK-STAT3 signaling. Inhibition of STAT3 phosphorylation by JAK inhibitor JSI-124 almost completely abrogated the effects of PUFAs on MDSCs. Moreover, the effects of PUFAs on MDSCs and the underlying mechanisms were confirmed in tumor-bearing mice. In summary, this study sheds new light on the immune modulatory role of PUFAs, and demonstrates that MDSCs expansion may mediate the effects of PUFAs on the immune system.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Janus Quinases/metabolismo , Células Mieloides/imunologia , Fator de Transcrição STAT3/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Ativação Enzimática , Células Hep G2 , Humanos , Terapia de Imunossupressão , Janus Quinases/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , NADPH Oxidases/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Triterpenos/metabolismo
20.
J Clin Immunol ; 33(4): 798-808, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354838

RESUMO

PURPOSE: Myeloid-derived suppressor cells (MDSCs) are known to accumulate under some pathologic conditions and suppress immune system in a variety of ways. This study aims to evaluate the significance of MDSCs in chronic Hepatitis C (CHC) patients. METHODS: 14 CHC patients and healthy donors were enrolled and subject to antiviral therapy including Peg-INF-alpha and Ribavirin for 48 weeks. The peripheral blood mononuclear cells (PBMCs) were collected at different weeks post-therapy and MDSC frequency was analyzed by flow cytometry. The correlation between MDSCs level with CHC disease parameters was analyzed by Spearman's rank test. The suppressive function of MDSCs from CHC patients and the underlying mechanism was further evaluated. RESULTS: A significant elevation of MDSCs was observed in the peripheral blood of treatment-naive CHC patients compared with healthy donors. The level of MDSCs in CHC patients correlated with plasma HCV-RNA (r = 0.7164, p = 0.0039), blood aminotransaminase (r = 0.6116, p = 0.021), and activated CD38(+) T cells (CD4(+): r = 0.6649, p = 0.0095; CD8(+): r = 0.6189, p = 0.0189). Initiation of clinical therapy reduced MDSC levels as early as 4 weeks, while it rebounded at week 12 post-therapy in patients. CHC-derived MDSCs could suppress T cell function in an arginase-1-dependent manner, that was distinct from the HCV core protein-generated MDSCs as previously reported. CONCLUSION: Our study reveals a significant correlation between MDSC levels with HCV disease progression, and their response to antiviral therapy. The arginase-1-dependent mechanism of MDSCs from CHC patients indicates that arginase-1 may be promising target for HCV immunotherapy.


Assuntos
Hepatite C Crônica/imunologia , Células Mieloides/imunologia , Adulto , Antivirais/uso terapêutico , Arginase/metabolismo , Contagem de Células , Progressão da Doença , Feminino , Hepatite C Crônica/tratamento farmacológico , Humanos , Terapia de Imunossupressão , Interferon-alfa/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Células Mieloides/efeitos dos fármacos , Células Mieloides/virologia , RNA Viral/análise , RNA Viral/efeitos dos fármacos , Ribavirina/uso terapêutico , Linfócitos T/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...