Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11393-11405, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842044

RESUMO

In this research, a range of Pt/CeO2 catalysts featuring varying Pt-O-Ce bond contents were developed by modulating the oxygen vacancies of the CeO2 support for toluene abatement. The Pt/CeO2-HA catalyst generated a maximum quantity of Pt-O-Ce bonds (possessed the strongest metal-support interaction), as evidenced by the visible Raman results, which demonstrated outstanding toluene catalytic performance. Additionally, the UV Raman results revealed that the strong metal-support interaction stimulated a substantial increase in oxygen vacancies, which could facilitate the activation of gaseous oxygen to generate abundant reactive oxygen species accumulated on the Pt/CeO2-HA catalyst surface, a conclusion supported by the H2-TPR, XPS, and toluene-TPSR results. Furthermore, the results from quasi-in situ XPS, in situ DRIFTS, and DFT indicated that the Pt/CeO2-HA catalyst with a strong metal-support interaction led to improved mobility of reactive oxygen species and lower oxygen activation energies, which could transfer a large number of activated reactive oxygen species to the reaction interface to participate in the toluene oxidation, resulting in the relatively superior catalytic performance. The approach of tuning the metal-support interaction of catalysts offers a promising avenue to develop highly active catalysts for toluene degradation.

2.
J Colloid Interface Sci ; 673: 746-755, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905996

RESUMO

To clarify the key role of oxygen vacancy defects on enhancing the oxidative activity of the catalysts, metal-organic frameworks (MOFs) derived MnOX catalysts with different morphologies and oxygen vacancy defects were successfully prepared using a facile in-situ self-assembly strategy with different alkali moderators. The obtained morphologies included three-dimensional (3D) triangular cone stacked MnOX hollow sphere (MnOX-H) and 3D nanoparticle stacked MnOX nanosphere (MnOX-N). Compared to MnOX-N, MnOX-H exhibited higher activity for the oxidation of toluene (T90 = 226 °C). This was mainly due to the large number of oxygen vacancy defects and Mn4+ species in the MnOX-H catalyst. In addition, the hollow structure of MnOX-H not only facilitated toluene adsorption and activation of toluene and also provided more active sites for toluene oxidation. Reaction mechanism studies showed that the conversion of toluene to benzoate could be realized over MnOX-H catalyst during toluene adsorption at room temperature. In addition, abundant oxygen vacancy defects can accelerate the activated oxidation of toluene and the formation of oxidation products during toluene oxidation.

3.
J Trace Elem Med Biol ; 84: 127456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692229

RESUMO

Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.


Assuntos
Cobre , Inflamação , Sepse , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/microbiologia , Humanos , Inflamação/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia
4.
Chemosphere ; 334: 138995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211160

RESUMO

Increasing the contact efficiency and improving the intrinsic activity are two effective strategies to obtain efficient catalysts for soot combustion. Herein, the electrospinning method is used to synthesize fiber-like Ce-Mn oxide with a strong synergistic effect. The slow combustion of PVP in precursors and highly soluble manganese acetate in spinning solution facilitates the formation of fibrous Ce-Mn oxides. The fluid simulation clearly indicates that the slender and uniform fibers provide more interwoven macropores to capture soot particles than the cubes and spheres do. Accordingly, electrospun Ce-Mn oxide exhibits better catalytic activity than reference catalysts, including Ce-Mn oxides by co-precipitation and sol-gel methods. The characterizations suggest that Mn3+ substitution into fluorite-type CeO2 enhances the reducibility through the acceleration of Mn-Ce electron transfer, improves the lattice oxygen mobility by weakening the Ce-O bonds, and induces oxygen vacancies for the activation of O2. The theoretical calculation reveals that the release of lattice oxygen becomes easy because of a low formation energy of oxygen vacancy, while the high reduction potential is beneficial for the activation of O2 on Ce3+-Ov (oxygen vacancies). Due to above Ce-Mn synergy, the CeMnOx-ES shows more active oxygen species and higher oxygen storage capacity than CeO2-ES and MnOx-ES. The theoretical calculation and experimental results suggest that the adsorbed O2 is more active than lattice oxygen and the catalytic oxidation mainly follows the Langmuir-Hinshelwood mechanism. This study indicates that electrospinning is a novel method to obtain efficient Ce-Mn oxide.


Assuntos
Cério , Óxidos , Óxidos/química , Fuligem/química , Cério/química , Oxirredução , Catálise , Oxigênio
5.
Chemosphere ; 279: 130658, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134427

RESUMO

In this work, a series of spindle-like CeO2 supports with different contents of surface oxygen vacancies were fabricated by an in-situ atmosphere thermal pyrolysis method. Due to the unique surface physicochemical properties of the modified CeO2 supports, the interaction between Pt and CeO2 can be regulated during the synthesis of the Pt/CeO2 catalyst. The abundant oxygen vacancies on the CeO2 support could preferentially trap Pt2+ ions in solution during the Pt impregnation process and enhance the Pt-CeO2 interaction in the subsequent reduction process, which results in the strongest Pt-O-Ce bonds formed on the PCH catalysts successfully (0.6% Pt loading on the CH support, which generated by thermal pyrolysis of Ce(OH)CO3 under H2 atmosphere). The strong Pt-O-Ce bond would trigger abundant surface oxygen species generated and enhanced the lattice oxygen species transfer from CeO2 supports to Pt nanoparticles. It was crucial to boosting the toluene catalytic activity. Therefore, the PCH catalyst exhibits the highest activity for toluene oxidation (T10 = 120 °C, T50 = 138 °C, and T90 = 150 °C with WHSV = 60,000 mL g-1 h-1) and remarkable durability and water resistance among all catalysts. We also conclude that the Pt-O-Ce bond may be the active site for toluene oxidation by calculating the turnover frequencies (TOFPt-O-Ce) value for all Pt/CeO2 catalysts. Moreover, the DFT calculation indicates that the Pt/CeO2 catalyst with a strong Pt-O-Ce bond possesses the lowest oxygen absorption energy and higher CO tolerance ability, which leads to excellent catalytic performance for toluene and CO catalytic oxidation.


Assuntos
Cério , Atmosfera , Catálise , Pirólise , Tolueno
6.
Chemosphere ; 247: 125860, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069710

RESUMO

Herein, CeO2 catalysts with nanotube, nanobelt, and wire-in-nanotube morphologies were successfully fabricated by a facile single spinneret electrospinning technique. And catalytic activity of these electrospun CeO2 nanomaterials were evaluated by toluene catalytic combustion reaction. Among the three morphologies of CeO2 catalysts, CeO2 nanobelt (CeO2-NB) presented the best toluene catalytic combustion performance (T90% = 230 °C) at WHSV = 60,000 mL g-1 h-1, also exhibited the lowest activation energy (Ea = 80.2 kJ/mol). Based on the characterization by TEM, XRD, BET, SEM, XPS, Raman spectroscopy, H2-TPR, and O2-TPD results, the high catalytic activity of CeO2-NB catalyst was attributed to its porous nanobelt morphology with larger specific surface area and the abundance of surface oxygen vacancies. Furthermore, the CeO2-NB catalysts presented an excellent durability by longtime on-stream test (as well as presence of 5% vol. water vapor), suggesting its great potential for practical air pollution control application.


Assuntos
Cério/química , Nanoestruturas/química , Tolueno/química , Poluição do Ar/prevenção & controle , Catálise , Nanotubos/química , Oxigênio/química , Porosidade , Compostos Orgânicos Voláteis
7.
Insects ; 10(9)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527493

RESUMO

Hemolymph melanization is a conserved immune response in insects and other arthropods. However, the physiological process of the hemolymph system in the melanization response is hardly studied. Here, alterations of hemocytes in immune melanization were observed by Escherichia coli infection in Bombyx mori. Results first showed that there were cells aggregating into clusters. However, it vanished, and only part of clustered hemocytes were melanized during the period of intense immunity. The hemocyte numbers immediately decreased following an immune challenge, slowly increased to a peak, then reduced and finally returned to normalization. Granulocytes participated in cells aggregation at the early and later immune stage, while plasmatocytes were responsible for hemocytes agglomerate and melanization for the longest time, and more oenocytoids appeared at the peak stage of melanization. Moreover, hemocytes played a crucial role in resisting invasion of pathogens by agglomerate and melanization, and the circulatory system maintained higher hemocyte numbers and stronger antibacterial activity in fifth than fourth instar larvae after infection. In vitro immune melanization was most likely preferentially implemented in an independent process. These were the main characteristics reflecting the physiological process of hemolymph immune melanization, which provided an important foundation for further study of the complete mechanisms in the immunity of silkworm.

8.
J Hazard Mater ; 364: 571-580, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30388641

RESUMO

Herein, a series of distinctively monolithic catalysts were first synthesized by decorating leaf-like Co-ZIF-L derivatives on Co2AlO4 coral-like microspheres from CoAl layered double hydroxides (LDHs), which were coated on three-dimensional porous Ni foam. As a proof of concept application, toluene was chosen as a probe molecule to evaluate their catalytic performances over the as-synthesized catalysts. As a result, the L-12 sample derived from Co2AlO4@Co-Co LDHs displayed an excellent catalytic performance, cycling stability and long-term stability for toluene oxidation (T99 = 272 °C, 33 °C lower than that of Co2AlO4 sample), where leaf-like Co-ZIF-L served as a sacrificial template to synthesize Co-Co LDHs. The improved catalytic performance was attributed to its distinctive structure, in which leaf-like Co-ZIF-L derivatives on Co2AlO4 resulted in its higher specific surface area, lower-temperature reducibility, rich surface oxygen vacancy and high valence Co3+ species. This work thus demonstrates a feasible strategy for the design and fabrication of hybrid LDHs/ZIFs-derived composite architectures, which is expected to construct other novel monolithic catalysts with hierarchical structures for other potential applications.

9.
Oncol Lett ; 16(5): 5645-5654, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344720

RESUMO

Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Prostaglandin E2 (PGE2) regulates various biological processes, including invasion, proliferation and apoptosis. E-prostanoid 3 (Ep3) is a PGE2 receptor, and the functional role of Ep3 in the progression of NSCLC remains unresolved. The present study investigated the effects of Ep3 in A549 cells and explored the underlying molecular mechanisms. The results revealed that the mRNA and protein expression levels of Ep3 were significantly upregulated in NSCLC tissues and A549 cells. Pharmacological inhibition of Ep3 or RNA interference against Ep3 attenuated the cell viability, migration and invasion, and promoted apoptosis in A549 cells. Ep3 deficiency also decreased the expression of transforming growth factor (TGF)-ß, phosphorylated (p)-Smad2 and p-Smad3. The transfection of TGF-ß overexpression plasmids reversed the effects of Ep3 deficiency on the cell viability and apoptosis in A549 cells. Finally, an in vivo experiment revealed that Ep3-siRNA transfection strongly reduced the tumor growth and tumor volume. The Ep3-siRNA transfection also inhibited tumor metastasis via suppression of the expression of metastasis-associated proteins. Taken together, these findings indicate that inhibition of Ep3 attenuates the viability and migration, and promotes the apoptosis of NSCLC through suppression of the TGF-ß/Smad signaling pathway. Targeting of the Ep3/TGF-ß/Smad signaling pathway may be a novel therapeutic strategy for the prevention and treatment of NSCLC.

10.
Sci Rep ; 7(1): 6848, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754962

RESUMO

Dopamine is widely distributed in metazoans and is implicated in many physiological functions. Dopaminergic signaling is mediated through two classes of dopamine receptors, D1-like and D2-like. Phylogeny analysis reveals that, the dopamine receptors probably appeared ahead of the cnidarian divergence, two distinct classes of dopamine receptors likely formed prior to the separation of deuterostomes and protostomes, and INDRs probably split from its ancestor before the emergence of nematodes. Two D2-like genes are closely linked on the same scaffold, and the chromosome region around D2-like gene loci show colinearity among different species within Lepidoptera. These indicate two D2-like and their adjunction genes are likely Lepidoptera-specific orthologs, and occur by gene duplication event taken place after Lepidoptera ancestor split from the common ancestor of Lepidoptera and Diptera. In silkworm, two D2-like genes were expressed in examined tissues, and encoded BmDop2R2 having all the features of D2-like receptors and BmDop2R1 being a truncated variant without the region of N-terminal to TM II. Only dopamine distinctly lowered cAMP levels in BmDop2R2-expressing cells, whereas all tested amines for BmDop2R1 had not markedly effect in pharmacological test. These suggest there is functional difference between the two genes, which are likely resulted from subfunctionalization of gene duplication.


Assuntos
Bombyx/genética , Evolução Molecular , Proteínas de Insetos/genética , Receptores de Dopamina D2/genética , Animais , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Receptores de Dopamina D2/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 32(8): 1093-1103, 2016 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-29022310

RESUMO

The observation statistics suggested that the haemolymph melanization speed of larvae became fast and the growth inhibition of Escherichia coli was strong as the quantities of feeding on mulberry leaves increased. The RT-PCR result showed that the mRNA expressions of melanin biosynthesis enzyme BmTan, BmPo-1, BmYellow-f and BmDdc were high in the haemolyph of 5 L 3 d larvae. The qPCR analysis showed Bmtan, Bmddc, Bmyellow, Bmebony and Bmblack, especially Bmddc expression were significantly higher in black disease larvae than in normal larvae. Compared with control, Ddc inhibitors drastically inhibited the lipopolysaccharide-induced haemolymph melanization. In addition, the content of Dopa and Dopamine markedly rose after E. coli injection. These indicated that haemolymph melanization was linked to immune defenses and Bmddc may play a role in melanization response of haemolymph immune in silkworm.


Assuntos
Bombyx/enzimologia , Bombyx/genética , Hemolinfa/química , Melaninas/biossíntese , Animais , Bombyx/microbiologia , Escherichia coli , Genes de Insetos , Larva
12.
J Pers Soc Psychol ; 106(4): 514-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24660990

RESUMO

Four dimensions of psychological distance (temporal, social, spatial, and probabilistic) have been widely studied. This research examines the distance-on-distance effect where an event that is close or distal along one dimension of psychological distance will be judged to be close or distal along other dimensions. For example, individuals will perceive greater likelihood to win a lottery (probabilistic distance) if they sit closer to the prize (spatial distance). Drawing on 2 streams of findings in the construal level literature, I propose that this distance-on-distance effect is mediated by construal level induced by the known distance and only occurs when the psychological distance is egocentric. Five studies provide evidence supporting the basic effect, its underlying mechanism, and the boundary condition. These findings have important implications for the construal level literature, together with the research on distance perceptions.


Assuntos
Percepção de Distância , Adulto , Idoso , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Probabilidade , Distância Psicológica , Recompensa , Percepção do Tempo , Incerteza , Adulto Jovem
13.
Asian Pac J Cancer Prev ; 14(11): 6757-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24377601

RESUMO

Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug- sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...