Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Processes ; 193: 104505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547376

RESUMO

Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Humanos , Vibração
2.
Artigo em Inglês | MEDLINE | ID: mdl-32454162

RESUMO

Arecoline is a naturally occurring psychoactive alkaloid with partial agonism at nicotinic and muscarinic acetylcholine receptors. Arecoline consumption is widespread, making it the fourth (after alcohol, nicotine and caffeine) most used substance by humans. However, the mechanisms of acute and chronic action of arecoline in-vivo remain poorly understood. Animal models are a valuable tool for CNS disease modeling and drug screening. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a promising novel model organism for neuroscience research. Here, we assessed the effects of acute and chronic arecoline on adult zebrafish behavior and physiology. Overall, acute and chronic arecoline treatments produced overt anxiolytic-like behavior (without affecting general locomotor activity and whole-body cortisol levels), with similar effects also caused by areca nut water extracts. Acute arecoline at 10 mg/L disrupted shoaling, increased social preference, elevated brain norepinephrine and serotonin levels and reduced serotonin turnover. Acute arecoline also upregulated early protooncogenes c-fos and c-jun in the brain, whereas chronic treatment with 1 mg/L elevated brain expression of microglia-specific biomarker genes egr2 and ym1 (thus, implicating microglial mechanisms in potential effects of long-term arecoline use). Finally, acute 2-h discontinuation of chronic arecoline treatment evoked withdrawal-like anxiogenic behavior in zebrafish. In general, these findings support high sensitivity of zebrafish screens to arecoline and related compounds, and reinforce the growing utility of zebrafish for probing molecular mechanisms of CNS drugs. Our study also suggests that novel anxiolytic drugs can eventually be developed based on arecoline-like molecules, whose integrative mechanisms of CNS action may involve monoaminergic and neuro-immune modulation.


Assuntos
Ansiolíticos/farmacologia , Arecolina/farmacologia , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Feminino , Masculino , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peixe-Zebra
3.
J Ethnopharmacol ; 267: 113383, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918992

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY: As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS: A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS: We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS: We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Modelos Animais , Peixe-Zebra
4.
Behav Brain Res ; 389: 112644, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344037

RESUMO

Stress is a common trigger of stress-related illnesses, such as anxiety, phobias, depression and post-traumatic stress disorder (PTSD). Various animal models successfully reproduce core behaviors of these clinical conditions. Here, we develop a novel zebrafish model of stress (potentially relevant to human stress-related disorders), based on delayed persistent behavioral, endocrine and genomic responses to an acute severe 'combined' stressor. Specifically, one week after adult zebrafish were exposed to a complex combined 90-min stress, we assessed their behaviors in the novel tank and the light-dark box tests, as well as whole-body cortisol and brain gene expression, focusing on genomic biomarkers of microglia, astrocytes, neuroinflammation, apoptosis and epigenetic modulation. Overall, stressed fish displayed persistent anxiety-like behavior, elevated whole-body cortisol, as well as upregulated brain mRNA expression of genes encoding the glucocorticoid receptor, neurotrophin BDNF and its receptors (TrkB and P75), CD11b (a general microglial biomarker), COX-2 (an M1-microglial biomarker), CD206 (an M2-microglial biomarker), GFAP (a general astrocytal biomarker), C3 (an A1-astrocytal biomarker), S100α10 (an A2-astrocytal biomarker), as well as pro-inflammatory cytokines IL-6, IL-1ß, IFN-γ and TNF-α. Stress exposure also persistently upregulated the brain expression of several key apoptotic (Bax, Caspase-3, Bcl-2) and epigenetic genes (DNMT3a, DNMT3b, HAT1, HDAC4) in these fish. Collectively, the present model not only successfully recapitulates lasting behavioral and endocrine symptoms of clinical stress-related disorders, but also implicates changes in neuroglia, neuroinflammation, apoptosis and epigenetic modulation in long-term effects of stress pathogenesis in vivo.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Animais , Apoptose , Encefalite/metabolismo , Epigênese Genética , Feminino , Hidrocortisona/metabolismo , Masculino , Neuroglia/metabolismo , Peixe-Zebra
5.
Neurotoxicol Teratol ; 79: 106881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240749

RESUMO

Kava kava (Piper methysticum) is a medicinal plant containing kavalactones that exert potent sedative, analgesic and anti-stress action. However, their pharmacological effects and molecular targets remain poorly understood. The zebrafish (Danio rerio) has recently emerged as a powerful new model organism for neuroscience research and drug discovery. Here, we evaluate the effects of acute and chronic exposure to kava and kavalactones on adult zebrafish anxiety, aggression and sociality, as well as on their neurochemical, neuroendocrine and genomic responses. Supporting evolutionarily conserved molecular targets, acute kava and kavalactones evoked dose-dependent behavioral inhibition, upregulated brain expression of early protooncogenes c-fos and c-jun, elevated brain monoamines and lowered whole-body cortisol. Chronic 7-day kava exposure evoked similar behavioral effects, did not alter cortisol levels, and failed to evoke withdrawal-like states upon discontinuation. However, chronic kava upregulated several microglial (iNOS, Egr-2, CD11b), astrocytal (C3, C4B, S100a), epigenetic (ncoa-1) and pro-inflammatory (IL-1ß, IL-6, TNFa) biomarker genes, downregulated CD206 and IL-4, and did not affect major apoptotic genes in the brain. Collectively, this study supports robust, evolutionarily conserved behavioral and physiological effects of kava and kavalactones in zebrafish, implicates brain monoamines in their acute effects, and provides novel important insights into potential role of neuroglial and epigenetic mechanisms in long-term kava use.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Kava , Extratos Vegetais/administração & dosagem , Agressão/efeitos dos fármacos , Animais , Ansiedade/prevenção & controle , Encéfalo/metabolismo , Descoberta de Drogas/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Comportamento Social , Peixe-Zebra
6.
Neuroscience ; 429: 33-45, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31931109

RESUMO

Multiple species display robust behavioral variance among individuals due to different genetic, genomic, epigenetic, neuroplasticity and environmental factors. Behavioral individuality has been extensively studied in various animal models, including rodents and other mammals. Fish, such as zebrafish (Danio rerio), have recently emerged as powerful aquatic model organisms with overt individual differences in behavioral, nociceptive and other CNS traits. Here, we evaluate individual behavioral differences in mammals and fish, emphasizing the importance of cross-species analyses of intraspecies variance in experimental models of normal and pathological CNS functions.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Individualidade , Mamíferos , Modelos Animais
7.
ACS Chem Neurosci ; 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31904216

RESUMO

Kava (kava kava, Piper methysticum) is a common drug-containing plant in the Pacific islands. Kavalactones, its psychoactive compounds, exert potent central nervous system (CNS) action clinically and in animal models. However, the exact pharmacological profiles and mechanisms of action of kava on the brain and behavior remain poorly understood. Here, we discuss clinical and experimental data on kava psychopharmacology and summarize chemistry and synthesis of kavalactones. We also review its societal impact, drug use and abuse potential, and future perspectives on translational kava research.

8.
J Neurosci Methods ; 333: 108563, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863804

RESUMO

BACKGROUND: The zebrafish (Danio rerio) is rapidly emerging as an important model species in neuroscience research. Neurobehavioral studies in zebrafish are typically based on automated video-tracking of individual or group fish responses to various stressors, drug treatments and genetic manipulations. However, moving zebrafish also emit vibration signals that can be recorded and characterized. NEW METHOD: Here, we present the first evidence that vibration-based analyses can be used to assess zebrafish behaviors. Utilizing a free accelerometer smartphone application, we developed a simple inexpensive custom-made setup to detect vibration signals in adult zebrafish. RESULTS: We demonstrate that moving zebrafish generate detectable, reproducible vibration power frequency spectra that may be sensitive to various experimental manipulations, including sedative and anxiolytic treatments. COMPARISON WITH EXISTING METHODS: The present study is the first report describing vibration-based behavioral characterization in zebrafish. CONCLUSIONS: The present proof-of-concept study expands the toolkit of zebrafish neurophenotyping methods to include vibration data, which may not only reflect major global changes in zebrafish locomotion (e.g., sedation or hyperactivity), but can also eventually help detect more nuanced, behavior- or context-specific changes in zebrafish phenotypes.


Assuntos
Neurociências , Peixe-Zebra , Animais , Comportamento Animal , Locomoção , Vibração
9.
Aquat Toxicol ; 210: 44-55, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30822702

RESUMO

Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fenômenos Fisiológicos do Sistema Nervoso/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Interação Gene-Ambiente , Humanos , Modelos Biológicos , Fenômenos Fisiológicos do Sistema Nervoso/genética , Fenótipo , Reprodutibilidade dos Testes , Caracteres Sexuais , Especificidade da Espécie , Peixe-Zebra/genética
10.
ACS Chem Neurosci ; 10(5): 2176-2185, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664352

RESUMO

Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.


Assuntos
Arecolina , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30476525

RESUMO

Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.


Assuntos
Doenças do Sistema Nervoso Central , Diabetes Mellitus , Modelos Animais de Doenças , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/fisiopatologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Humanos
12.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667115

RESUMO

Candida glabrata is a promising microorganism for organic acid production. The present study aimed to investigate the role of C. glabrata Mediator complex subunit 3 (CgMed3p) in protecting C. glabrata under low-pH conditions. To this end, genes CgMED3A and CgMED3B were deleted, resulting in the double-deletion Cgmed3ABΔ strain. The final biomass and cell viability levels of Cgmed3ABΔ decreased by 64.5% and 35.8%, respectively, compared to the wild-type strain results at pH 2.0. In addition, lack of CgMed3ABp resulted in selective repression of a subset of genes in the lipid biosynthesis and metabolism pathways. Furthermore, C18:1, lanosterol, zymosterol, fecosterol, and ergosterol were 13.2%, 80.4%, 40.4%, 78.1%, and 70.4% less abundant, respectively, in the Cgmed3ABΔ strain. In contrast, the concentration of squalene increased by about 44.6-fold. As a result, membrane integrity, rigidity, and H+-ATPase activity in the Cgmed3ABΔ strain were reduced by 62.7%, 13.0%, and 50.3%, respectively. In contrast, overexpression of CgMED3AB increased the levels of C18:0, C18:1, and ergosterol by 113.2%, 5.9%, and 26.4%, respectively. Moreover, compared to the wild-type results, dry cell weight and pyruvate production increased, irrespective of pH buffering. These results suggest that CgMED3AB regulates membrane composition, which in turn enables cells to tolerate low-pH stress. We propose that regulation of CgMed3ABp may provide a novel strategy for enhancing low-pH tolerance and increasing organic acid production by C. glabrataIMPORTANCE The objective of this study was to investigate the role of Candida glabrata Mediator complex subunit 3 (CgMed3ABp) and its regulation of gene expression at low pH in C. glabrata We found that CgMed3ABp was critical for cellular survival and pyruvate production during low-pH stress. Measures of the levels of plasma membrane fatty acids and sterol composition indicated that CgMed3ABp could play an important role in regulating homeostasis in C. glabrata We propose that controlling membrane lipid composition may enhance the robustness of C. glabrata for the production of organic acids.


Assuntos
Candida glabrata/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Complexo Mediador/metabolismo , Esteróis/metabolismo , Candida glabrata/química , Candida glabrata/genética , Membrana Celular/química , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Complexo Mediador/genética , Esteróis/química
13.
Appl Environ Microbiol ; 82(23): 6920-6929, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663025

RESUMO

The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the C. glabrata transcription factor Crz1p (CgCrz1p) and its role in tolerance to acid stress, we deleted or overexpressed the corresponding gene, CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in the dry weight of cells (DCW) and a 50% drop in cell viability compared with those of the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly downregulated. Consequently, the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids, and the ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H+-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol contents by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H+-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, the DCW and pyruvate titers increased by 48% and 60%, respectively, compared to that of the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrataIMPORTANCE This study provides insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during the industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at a low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity and that it enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C. glabrata productivity at a low pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...