Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338532

RESUMO

Delaying the deterioration of bakery goods is necessary in the food industry. The objective of this study was to determine the effects of wheat oligopeptide (WOP) on the qualities of bread rolls. The effects of WOP on the baking properties, moisture content, and starch crystallization of rolls during the storage process were investigated in this study. The results showed that WOP effectively improved the degree of gluten cross-linking, thereby improving the specific volume and the internal structure of rolls. The FTIR and XRD results showed that the addition of WOP hindered the formation of the starch double helix structure and decreased its relative crystallinity. The DSC results revealed a decrease in the enthalpy change (ΔH) from 0.812 to 0.608 J/g after 7 days of storage with 1.0% WOP addition, further indicating that WOP reduced the availability of water for crystal lattice formation and hindered the rearrangement of starch molecules. The addition of WOP also improved the microstructure of the rolls that were observed using SEM analysis. In summary, WOP is expected to be an effective natural additive to inhibit starch staling and provide new insights into starchy food products.

2.
Nanoscale ; 10(48): 23164-23169, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30515499

RESUMO

Droplets are ubiquitous in nature and the preferential control of droplet transport offers limitless potential for efficient mass and momentum transfer as well as energy conversion. In this work, we show that even without the need for any external energy input, the self-propelled motion of droplets driven by a surface wetting gradient can lead to reliable electricity generation. Simple analytical analysis demonstrates that the output voltage results from the modulation of the surface charge distribution on the dynamically changing solid/liquid interfaces, which can be programmed by tailoring the wetting gradient and the size of the droplet. We demonstrate that a self-propelled 25 µL droplet can generate a peak current of 93.5 nA and a maximum output power of 2.4 nW. This work provides a new angle for optimizing energy harvesting devices based on liquid-solid interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...