Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(3): 411-422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195996

RESUMO

Evidence is mounting that vertebrate defaunation greatly impacts global biogeochemical cycling. Yet, there is no comprehensive assessment of the potential vertebrate influence over plant decomposition, despite litter decay being one of the largest global carbon fluxes. We therefore conducted a global meta-analysis to evaluate vertebrate effects on litter mass loss and associated element release across terrestrial and aquatic ecosystems. Here we show that vertebrates affected litter decomposition by various direct and indirect pathways, increasing litter mass loss by 6.7% on average, and up to 34.4% via physical breakdown. This positive vertebrate impact on litter mass loss was consistent across contrasting litter types (woody and non-woody), climatic regions (boreal, temperate and tropical), ecosystem types (aquatic and terrestrial) and vertebrate taxa, but disappeared when evaluating litter nitrogen and phosphorus release. Moreover, we found evidence of interactive effects between vertebrates and non-vertebrate decomposers on litter mass loss, and a larger influence of vertebrates at mid-to-late decomposition stages, contrasting with the invertebrate effect known to be strongest at early decomposition stage. Our synthesis demonstrates a global vertebrate control over litter mass loss, and further stresses the need to account for vertebrates when assessing the impacts of biodiversity loss on biogeochemical cycles.


Assuntos
Ecossistema , Plantas , Animais , Plantas/metabolismo , Biodiversidade , Vertebrados , Nitrogênio/metabolismo
2.
Nat Plants ; 9(6): 898-907, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169855

RESUMO

Old trees have many ecological and socio-cultural values. However, knowledge of the factors influencing their long-term persistence in human-dominated landscapes is limited. Here, using an extensive database (nearly 1.8 million individual old trees belonging to 1,580 species) from China, we identified which species were most likely to persist as old trees in human-dominated landscapes and where they were most likely to occur. We found that species with greater potential height, smaller leaf size and diverse human utilization attributes had the highest probability of long-term persistence. The persistence probabilities of human-associated species (taxa with diverse human utilization attributes) were relatively high in intensively cultivated areas. Conversely, the persistence probabilities of spontaneous species (taxa with no human utilization attributes and which are not cultivated) were relatively high in mountainous areas or regions inhabited by ethnic minorities. The distinctly different geographic patterns of persistence probabilities of the two groups of species were related to their dissimilar responses to heterogeneous human activities and site conditions. A small number of human-associated species dominated the current cohort of old trees, while most spontaneous species were rare and endemic. Our study revealed the potential impacts of human activities on the long-term persistence of trees and the associated shifts in species composition in human-dominated landscapes.


Assuntos
Ecossistema , Mariposas , Animais , Humanos , Bases de Dados Factuais , China , Folhas de Planta
3.
Trends Ecol Evol ; 37(9): 803-813, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810137

RESUMO

A priority research field addresses how to optimize diverse ecosystem services to people, including biodiversity support, regulatory, utilitarian and cultural services. This field may benefit from linking ecosystem services to the sizes of different body parts of organisms, with functional traits as the go-between. Using woody ecosystems to explore such linkages, we hypothesize that across stem diameter classes from trunk via branches to twigs, key wood and bark functional traits (especially those defining size-shape and resource economics spectra) vary both within individual trees and shrubs and across woody species, thereby together boosting ecosystem multifunctionality. While we focus on woody plants aboveground, we discuss promising extensions to belowground organs of trees and shrubs and analogs with other organisms, for example, vertebrate animals.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Fenótipo , Plantas , Árvores
4.
Glob Chang Biol ; 28(10): 3310-3320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234326

RESUMO

Earth system models are implementing soil phosphorus dynamic and plant functional traits to predict functional changes in global forests. However, the linkage between soil phosphorus and plant traits lacks empirical evidence, especially in mature forests. Here, we examined the soil phosphorus constraint on plant functional traits in a mature subtropical forest based on observations of 9943 individuals from 90 species in a 5-ha forest dynamic plot and 405 individuals from 15 species in an adjacent 10-year nutrient-addition experiment. We first confirmed a pervasive phosphorus limitation on subtropical tree growth based on leaf N:P ratios. Then, we found that soil phosphorus dominated multidimensional trait variations in the 5-ha forest dynamic plot. Soil phosphorus content explained 44% and 53% of the variance in the traits defining the main functional space across species and communities, respectively. Lastly, we found much stronger phosphorus effects on most plant functional traits than nitrogen at both species and community levels in the 10-year nutrient-addition experiment. This study provides evidence for the consistent pattern of soil phosphorus constraint on plant trait variations between the species and community levels in a mature evergreen broadleaf forest in the East Asian monsoon region. These findings shed light on the predominant role of soil phosphorus on plant functional trait variations in mature subtropical forests, providing new insights for models to incorporate soil phosphorus constraint in predicting future vegetation dynamics.


Assuntos
Fósforo , Solo , China , Florestas , Humanos , Nitrogênio/análise , Folhas de Planta/química , Árvores
5.
Ecology ; 102(10): e03480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270798

RESUMO

The plant economics spectrum integrates trade-offs and covariation in resource economic traits of different plant organs and their consequences for pivotal ecosystem processes, such as decomposition. However, in this concept stems are often considered as one unit ignoring the important functional differences between wood (xylem) and bark. These differences may not only affect the performance of woody plants during their lifetime, but may also have important "afterlife effects." Specifically, bark quality may strongly affect deadwood decomposition of different woody species. We hypothesized that (1) bark quality strongly influences bark decomposability to microbial decomposers, and possibly amplifies the interspecific variation in decomposition by invertebrate consumption, especially termites; and (2) bark decomposition has secondary effects on xylem mass loss by providing access to decomposers including invertebrates such as termites. We tested these hypotheses across 34 subtropical woody species representing five common plant functional types, by conducting an in situ deadwood decomposition experiment over 12-month in two sites in subtropical evergreen broad-leaved forest in China. We employed visual examination and surface density measurement to quantify termite consumption to both bark and the underlying xylem, respectively. Using principal component analysis, we synthesized seven bark traits to provide the first empirical evidence for a bark economics spectrum (BES), with high BES values (i.e., bark thickness, nitrogen, phosphorus, and cellulose contents) indicating a resource acquisitive strategy and low BES values (i.e., carbon, lignin, and dry matter contents) indicating a resource conservative strategy. The BES affected interspecific variation in bark mass loss and this relationship was strongly amplified by termites. The BES also explained nearly half of the interspecific variation in termite consumption to xylem, making it an important contributor to deadwood decomposition overall. Moreover, the above across-species relationships manifested also within plant functional types, highlighting the value of using continuous variation in bark traits rather than categorical plant functional types in carbon cycle modeling. Our findings demonstrate the potent role of the BES in influencing deadwood decomposition including positive invertebrate feedback thereon in warm-climate forests, with implications for the role of bark quality in carbon cycling in other woody biomes.


Assuntos
Ecossistema , Isópteros , Animais , Retroalimentação , Florestas , Casca de Planta , Xilema
6.
Nat Commun ; 11(1): 2999, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532992

RESUMO

Recent studies show coordinated relationships between plant leaf traits and their capacity to predict ecosystem functions. However, how leaf traits will change within species and whether interspecific trait relationships will shift under future environmental changes both remain unclear. Here, we examine the bivariate correlations between leaf economic traits of 515 species in 210 experiments which mimic climate warming, drought, elevated CO2, and nitrogen deposition. We find divergent directions of changes in trait-pairs between species, and the directions mostly do not follow the interspecific trait relationships. However, the slopes in the logarithmic transformed interspecific trait relationships hold stable under environmental changes, while only their elevations vary. The elevation changes of trait relationship are mainly driven by asymmetrically interspecific responses contrary to the direction of the leaf economic spectrum. These findings suggest robust interspecific trait relationships under global changes, and call for linking within-species responses to interspecific coordination of plant traits.


Assuntos
Mudança Climática , Ecossistema , Aquecimento Global , Folhas de Planta/metabolismo , Plantas/metabolismo , Algoritmos , Dióxido de Carbono/metabolismo , Secas , Modelos Biológicos , Nitrogênio/metabolismo , Fenótipo , Folhas de Planta/anatomia & histologia , Plantas/anatomia & histologia , Plantas/classificação , Especificidade da Espécie
7.
Front Plant Sci ; 11: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117390

RESUMO

Intraspecific trait variation (ITV) is common feature of natural communities and has gained increasing attention due to its significant ecological effects on community dynamics and ecosystem functioning. However, the estimation of ITV per se has yet to receive much attention, despite the need for accurate ITV estimation for trait-based ecological inferences. It remains unclear if, and to what extent, current estimations of ITV are biased. The most common method used to quantify ITV is the coefficient of variation (CV), which is dimensionless and can therefore be compared across traits, species, and studies. Here, we asked which CV estimator and data normalization method are optimal for quantifying ITV, and further identified the minimum sample size required for ±5% accuracy assuming a completely random sample scheme. To these ends, we compared the performance of four existing CV estimators, together with new simple composite estimators, across different data normalizations, and sample sizes using both a simulated and empirical trait datasets from local to regional scales. Our results consistently showed that the most commonly used ITV estimator (CV 1= σsample /µsample ), often underestimated ITV-in some cases by nearly 50%-and that underestimation varies largely among traits and species. The extent of this bias depends on the sample size, skewness and kurtosis of the trait value distribution. The bias in ITV can be substantially reduced by using log-transforming trait data and alternative CV estimators that take into consideration the above dependencies. We find that the CV4 estimator, also known as Bao's CV estimator, combined with log data normalization, exhibits the lowest bias and can reach ±5% accuracy with sample sizes greater than 20 for almost all examined traits and species. These results demonstrated that many previous ITV measurements may be substantially underestimated and, further, that these underestimations are not equal among species and traits even using the same sample size. These problems can be largely solved by log-transforming trait data first and then using the Bao's CV to quantify ITV. Together, our findings facilitate a more accurate understanding of ITV in community structures and dynamics, and may also benefit studies in other research areas that depend on accurate estimation of CV.

8.
Glob Chang Biol ; 26(3): 1833-1841, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31749261

RESUMO

Stem xylem-specific hydraulic conductivity (KS ) represents the potential for plant water transport normalized by xylem cross section, length, and driving force. Variation in KS has implications for plant transpiration and photosynthesis, growth and survival, and also the geographic distribution of species. Clarifying the global-scale patterns of KS and its major drivers is needed to achieve a better understanding of how plants adapt to different environmental conditions, particularly under climate change scenarios. Here, we compiled a xylem hydraulics dataset with 1,186 species-at-site combinations (975 woody species representing 146 families, from 199 sites worldwide), and investigated how KS varied with climatic variables, plant functional types, and biomes. Growing-season temperature and growing-season precipitation drove global variation in KS independently. Both the mean and the variation in KS were highest in the warm and wet tropical regions, and lower in cold and dry regions, such as tundra and desert biomes. Our results suggest that future warming and redistribution of seasonal precipitation may have a significant impact on species functional diversity, and is likely to be particularly important in regions becoming warmer or drier, such as high latitudes. This highlights an important role for KS in predicting shifts in community composition in the face of climate change.


Assuntos
Água , Xilema , Transpiração Vegetal , Estações do Ano , Temperatura
9.
Oecologia ; 190(3): 629-637, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31214834

RESUMO

Species with large intraspecific trait variability (ITV) have larger niche breadth than species with low ITV and thus are expected to be more abundant at the local scale. However, whether the positive ITV-abundance relationship holds in heterogeneous local environments remains uncertain. Using an individual-based trait dataset encompassing three leaf traits (leaf area, specific leaf area, and leaf dry mass content) of 20,248 individuals across 80 species in an environmentally heterogeneous subtropical forest in eastern China, ITV for each trait of each species was estimated by rarefaction. Resource-based niche breadth and marginality (the absolute distance between the mean resource states used by a species and the mean plot-wise resource states) were estimated simultaneously by the K-S method and the outlying mean index, respectively. Species with moderate ITV were often locally abundant, while species with large or small ITV were locally rare. This unimodal relationship between ITV and species abundance persisted when traits were analyzed separately and for all tree size classes. There was also a hump-backed relationship between niche breadth and marginality, and ITV was positively associated with niche breadth. The combined results suggest either a trade-off between the benefit from expanding niche breadth to adapt to multiple habitats and the disadvantage of reducing competitive ability, or a scarcity of favorable resources. Our results do not support the traditional thought that ITV positively correlates with species abundance in heterogeneous local environments. Instead, our study suggests that moderate-rather than large-intraspecific trait variability increases species abundance at local scales.


Assuntos
Florestas , Árvores , China , Ecossistema , Fenótipo
10.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924865

RESUMO

Forest succession is a central ecological topic due to the importance of its dynamic process for terrestrial ecosystems. However, we have limited knowledge of the relationship between forest succession and belowground microbiota, particularly regarding interactions in the rhizosphere. Here, we determined microbial community structure and biomass using phospholipid fatty acid (PLFA) biomarkers and microbial activity using extracellular enzyme activity in bulk and rhizosphere soils from three successional stages of subtropical forests in eastern China. Principal component analysis of PLFAs indicated distinct soil microbial communities among different successional stages and habitat locations. Specifically for the topsoil, we found the total microbial biomass, bacterial biomass and enzyme activities showed higher levels in the late than early stage, with a significant succession-induced accentuated rhizosphere effect. The increase in total microbial biomass and activity coincided with a net growth in bacterial rather than fungal biomass, indicating a model in which microbial biomass carrying capacity and activity could be affected by the creation or expansion of niches for certain functional group rather than by a rebalancing of competitive interactions among these groups. Furthermore, we demonstrated that forest succession significantly influenced enzyme activity via the changes in microbial biomass, as driven by edaphic factors. Overall, our study deepens the mechanistic understanding of forest recovery by linking soil microbial community and activity along successional chronosequences.


Assuntos
Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biomassa , China , Florestas , Fungos/classificação , Fungos/genética , Microbiota , Rizosfera , Solo/química
11.
Am J Bot ; 105(7): 1165-1174, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30070684

RESUMO

PREMISE OF STUDY: The plant size-trait relationship is a fundamental dimension in the spectrum of plant form and function. However, it remains unclear whether the trait scaling relationship within species is modified by tree size. Investigating size-dependent trait covariations within species is crucial for understanding the ontogenetic constraints on the intraspecific economic spectrum and, more broadly, the structure and causes of intraspecific trait variations. METHODS: We measured eight morphological, stoichiometric, and hydraulic traits for 604 individual plants of a shade-tolerant evergreen tree species, Litsea elongata, in a subtropical evergreen forest of eastern China. Individual trait values were regressed against tree basal diameter to evaluate size-dependent trait variations. Standardized major axis regression was employed to examine trait scaling relationships and to test whether there was a common slope and elevation in the trait scaling relationship across size classes. KEY RESULTS: Small trees tended to have larger, thinner leaves and longer, slenderer stems than larger trees, which indicates an acquisitive economic strategy in juvenile trees. Leaf nitrogen concentrations increased with plant size, which was likely due to a high ratio of structural to photosynthetic nitrogen in the evergreen leaves of large trees. Bivariate trait scaling was minimally modified by tree size, although the elevation of some relationships differed between size classes. CONCLUSIONS: Our results suggest that there are common economic and biophysical constraints on intraspecific trait covariation, independent of tree size. Small and large trees tend to be located at opposite ends of an intraspecific plant economic spectrum.


Assuntos
Nitrogênio/metabolismo , Árvores/anatomia & histologia , China , Escuridão , Florestas , Fenótipo , Fotossíntese , Árvores/fisiologia , Árvores/efeitos da radiação
12.
Oecologia ; 186(3): 793-803, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29344733

RESUMO

The importance of intraspecific trait variability (ITV) to the spatial distribution of individual species is unclear. We hypothesized that intraspecific trait dispersions underlying niche processes deviate more from null model expectations, by reducing their spread (range and variance), kurtosis, and standard deviation of near-neighbor distance, for species with aggregated than those with random distributions. The link between species' spatial distributions and ITV patterns was examined using an individual tree-based trait data set, in which specific leaf area, mean leaf area, leaf dry matter content, and diameter at breast height were measured for 18,773 stems of 45 species in a 4.84 ha mapped subtropical forest plot in China. The nearest-neighbor distance analysis showed that, of 45 species, 14 species were distributed in random and 31 species were distributed in aggregation, while no species was distributed in uniform in the plot. The dispersions of all studied traits in species with an aggregated distribution on average deviated more strongly from the null expectation than those in species with a random distribution and that the extent of deviation was negatively associated with the degree of spatial randomness across species. Our results indicate that niche processes are primarily responsible for the spatial structure of species with aggregated distributions, while stochastic processes drive those with random distributions. Our results highlight the fundamental role of ITV in shaping spatial patterns of co-existing species.


Assuntos
Florestas , Folhas de Planta , China , Fenótipo
13.
Tree Physiol ; 37(2): 173-185, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399260

RESUMO

The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas/metabolismo , Árvores/metabolismo , Evolução Biológica , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento
14.
Sci Total Environ ; 574: 654-662, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27657991

RESUMO

Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests.


Assuntos
Biomassa , Florestas , Folhas de Planta/fisiologia , Madeira , China , Nitrogênio , Árvores
15.
Tree Physiol ; 33(6): 609-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23824241

RESUMO

Scaling relationships among twig size, leaf size and leafing intensity fundamentally influence the twig-leaf deployment pattern, a property that affects the architecture and functioning of plants. However, our understanding of how these relationships change within a species or between species as a function of forest succession is unclear. We determined log-log scaling relationships between twig cross-sectional area (twig size) and each of total and individual leaf area, and leafing intensity (the number of leaves per twig volume) for 78 woody species along a successional series in subtropical evergreen forests in eastern China. The series included four stages: secondary shrub (S1), young (S2), sub-climax (S3) and climax evergreen broadleaved forests (S4). The scaling slopes in each of the three relationships did not differ among the four stages. The y-intercept did not shift among the successional stages in the relationship between twig cross-sectional area and total leaf area; however, the y-intercept was greatest in S4, intermediate in S3 and lowest in S2 and S1 for the relationship between twig size and individual leaf area, while the opposite pattern was found for the twig size-leafing intensity relationship. This indicates that late successional trees have few but large leaves while early successional trees have more small leaves per unit twig size. For the relationship between twig cross-sectional area and total leaf area, there was no difference in the regression slope between recurrent (appear in more than one stages) and non-recurrent species (appear in only one stage) for each of the S1-S2, S2-S3 and S3-S4 pairs. A significant difference in the y-intercept was found in the S2-S3 pair only. In the relationship between twig cross-sectional area and individual leaf area, the regression slope between recurrent and non-recurrent species was homogeneous in the S1-S2 and S3-S4 pairs, but heterogeneous in the S2-S3 pair. We conclude that forest succession caused the shift in the intercept, but did not affect scaling slopes for relationships among twig size, leaf size and leaf intensity. For recurrent species, the invariant scaling slope in the twig-leaf size relationship between adjacent pairs of successional stages may be related to their phenotypic plasticity by adjusting their twig and leaf deployment strategy to similar to what the non-recurrent species display.


Assuntos
Ecossistema , Fenótipo , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Árvores/fisiologia , Clima Tropical , Ecologia , Árvores/anatomia & histologia
16.
PLoS One ; 8(4): e61113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560114

RESUMO

Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Característica Quantitativa Herdável , Árvores/crescimento & desenvolvimento , China , Ecossistema , Aptidão Genética , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Análise de Regressão , Solo/química , Temperatura , Clima Tropical
17.
Ying Yong Sheng Tai Xue Bao ; 23(12): 3288-94, 2012 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-23479868

RESUMO

Evaluating the frost-resistance of evergreen woody plants is of significance in guiding the species selection in forest management in subtropical region. In this paper, an investigation was made on the functional traits (including specific leaf area, stem wood density, leaf area, leaf dry matter content, leaf relative electrical conductance, and twig wood density) of 64 common evergreen broad-leaved and coniferous woody plant species in the Ningbo region of Zhejiang Province, East China, after a severe snowstorm in early 2008, aimed to select the evergreen woody plants with high ability of freeze-tolerance, and to establish a related evaluation system. By using a hierarchy analysis approach, the weight values of the functional traits of each species were determined, and an index system for evaluating the plants tolerance ability against freeze and mechanical damage was established. Based on this system, 23 evergreen plant species with high tolerance ability against freeze and mechanical damage, such as Cyclobalanopsis gilva, Cyclobalanopsis nubium, Neolitsea aurata, and Vacciniuim mandarinorum, were selected. In the meantime, on the basis of the ordering with each of the functional traits, the ordering of the tolerance ability of the 64 plant species against freeze and mechanical damage was made, and a list for the frost-resistance ability of the subtropical evergreen woody plant species in Ningbo region was constituted.


Assuntos
Aclimatação , Temperatura Baixa , Árvores/fisiologia , Clima Tropical , Congelamento , Madeira/fisiologia
18.
Ying Yong Sheng Tai Xue Bao ; 16(12): 2459-64, 2005 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-16515207

RESUMO

Sprouting is an efficient regeneration means of woody plants to regain their biomass loss after disturbances. This paper reviewed the biological characteristics of sprouting, and its consequences on woody plants individual life history, dynamics of population and community, and biogeography. Many achievements have been obtained on the researches of sprouting strategy and its relationships with disturbances, but less is known about the ecological significances of sprouting, and especially, its effects on the structure and dynamics of woody plants population and community. As in China, both the basic and the applied research of sprouting ecology and vegetation restoration should be strengthened.


Assuntos
Ecologia , Brotos de Planta/fisiologia , Árvores/fisiologia , Ecossistema , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...