Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 26(6): 1045-1054, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311353

RESUMO

Aedes (Stegomyia) albopictus, also known as the Asian tiger mosquito, is a mosquito which originated in Asia. In recent years, it has become increasingly rampant throughout the world. This mosquito can transmit several arboviruses, including dengue, Zika and chikungunya viruses, and is considered a public health threat. Despite the urgent need of genome engineering to analyze specific gene functions, progress in genetical manipulation of Ae. albopictus has been slow due to a lack of efficient methods and genetic markers. In the present study, we established targeted disruptions in two genes, kynurenine hydroxylase (kh) and dopachrome conversion enzyme (yellow), to analyze the feasibility of generating visible phenotypes with genome editing by the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system in Ae. albopictus. Following Cas9 single guide RNA ribonucleoprotein injection into the posterior end of pre-blastoderm embryos, 30%-50% of fertile survivors produced alleles that failed to complement existing kh and yellow mutations. Complete eye and body pigmentation defects were readily observed in G1 pupae and adults, indicating successful generation of highly heritable mutations. We conclude that the CRISPR/Cas9-mediated gene editing system can be used in Ae. albopictus and that it can be adopted as an efficient tool for genome-scale analysis and biological study.


Assuntos
Aedes/genética , Edição de Genes/métodos , Insetos Vetores/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Feminino , Quinurenina 3-Mono-Oxigenase/genética , Masculino , Mutação
2.
Infect Dis Poverty ; 7(1): 103, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30392470

RESUMO

BACKGROUND: Ethiopia is one of the African countries where Plasmodium falciparum and P. vivax co-exist. Monitoring and evaluation of current malaria transmission status is an important component of malaria control as it is a measure of the success of ongoing interventions and guides the planning of future control and elimination efforts. MAIN TEXT: We evaluated changes in malaria control policy in Ethiopia, and reviewed dynamics of country-wide confirmed and clinical malaria cases by Plasmodium species and reported deaths for all ages and less than five years from 2001 to 2016. Districts level annual parasite incidence was analysed to characterize the malaria transmission stratification as implemented by the Ministry of Health. We found that Ethiopia has experienced major changes from 2003 to 2005 and subsequent adjustment in malaria diagnosis, treatment and vector control policy. Malaria interventions have been intensified represented by the increased insecticide treated net (ITN) and indoor residual spraying (IRS) coverage, improved health services and improved malaria diagnosis. However, countrywide ITN and IRS coverages were low, with 64% ITN coverage in 2016 and IRS coverage of 92.5% in 2016 and only implemented in epidemic-prone areas of > 2500 m elevation. Clinical malaria incidence rate dropped from an average of 43.1 cases per 1000 population annually between 2001 and 2010 to 29.0 cases per 1000 population annually between 2011 and 2016. Malaria deaths decreased from 2.1 deaths per 100 000 people annually between 2001 and 2010 to 1.1 deaths per 100 000 people annually between 2011 to 2016. There was shrinkage in the malaria transmission map and high transmission is limited mainly to the western international border area. Proportion of P. falciparum malaria remained nearly unchanged from 2000 to 2016 indicating further efforts are needed to suppress transmission. CONCLUSIONS: Malaria morbidity and mortality have been significantly reduced in Ethiopia since 2001, however, malaria case incidence is still high, and there were major gaps between ITN ownership and compliance in malarious areas. Additional efforts are needed to target the high transmission area of western Ethiopia to sustain the achievements made to date.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Controle de Mosquitos/legislação & jurisprudência , Etiópia/epidemiologia , Humanos , Incidência , Mosquiteiros Tratados com Inseticida , Inseticidas , Estudos Longitudinais , Malária Falciparum/mortalidade , Malária Vivax/mortalidade , Controle de Mosquitos/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação
3.
BMC Public Health ; 12: 83, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22276682

RESUMO

BACKGROUND: Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions around the world. Since the first occurrence of dengue was confirmed in Guangdong, China in 1978, dengue outbreaks have been reported sequentially in different provinces in South China transmitted by peridomestic Ae. albopictus mosquitoes, diplaying Ae. aegypti, a fully domestic vector that transmits dengue worldwide. Rapid and uncontrolled urbanization is a characteristic change in developing countries, which impacts greatly on vector habitat, human lifestyle and transmission dynamics on dengue epidemics. In September 2010, an outbreak of dengue was detected in Dongguan, a city in Guangdong province characterized by its fast urbanization. An investigation was initiated to identify the cause, to describe the epidemical characteristics of the outbreak, and to implement control measures to stop the outbreak. This is the first report of dengue outbreak in Dongguan, even though dengue cases were documented before in this city. METHODS: Epidemiological data were obtained from local Center of Disease Control and prevention (CDC). Laboratory tests such as real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), the virus cDNA sequencing, and Enzyme-Linked immunosorbent assay (ELISA) were employed to identify the virus infection and molecular phylogenetic analysis was performed with MEGA5. The febrile cases were reported every day by the fever surveillance system. Vector control measures including insecticidal fogging and elimination of habitats of Ae. albopictus were used to control the dengue outbreak. RESULTS: The epidemiological studies results showed that this dengue outbreak was initiated by an imported case from Southeast Asia. The outbreak was characterized by 31 cases reported with an attack rate of 50.63 out of a population of 100,000. Ae. albopictus was the only vector species responsible for the outbreak. The virus cDNA sequencing analysis showed that the virus responsible for the outbreak was Dengue Virus serotype-1 (DENV-1). CONCLUSIONS: Several characterized points of urbanization contributed to this outbreak of dengue in Dongguan: the residents are highly concentrated; the residents' life habits helped to form the habitats of Ae. albopictus and contributed to the high Breteau Index; the self-constructed houses lacks of mosquito prevention facilities. This report has reaffirmed the importance of a surveillance system for infectious diseases control and aroused the awareness of an imported case causing the epidemic of an infectious disease in urbanized region.


Assuntos
Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , China/epidemiologia , DNA Viral/isolamento & purificação , Dengue/diagnóstico , Dengue/fisiopatologia , Surtos de Doenças/prevenção & controle , Vetores de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Mosquitos , Vigilância da População/métodos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Urbanização , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...