Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 650(Pt B): 1319-1326, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478749

RESUMO

Molecularly imprinted photoelectrochemical sensors (MIPES) have gained significant attention in the detection field due to their high selectivity and accuracy. However, their sensitivity still needs improvement. Here we developed a TiO2-based MIPES (TiO2 NRs/NiOOH/rMIP) to detect ciprofloxacin (CIP). We identified the photoactive sites of TiO2 by NiOOH photo-deposition and anchored the imprinted sites on the photoactive sites by complexation between CIP and NiOOH. By regulating the imprinted sites, the photocurrent difference before and after the addition of CIP increases and the detection sensitivity of CIP is improved. Moreover, a PN heterojunction is formed between TiO2 and NiOOH, which enables rapid transfer of photoexcited holes and electrons to different semiconductors under the built-in electric field. This leads to improved photoactivity of TiO2 and further increases the sensitivity of MIPES. Compared with sensors prepared by the traditional electro-polymerization CIP and Molecularly imprinted polymers (TiO2 NRs/NiOOH/eMIP), TiO2 NRs/NiOOH/rMIP as constructed in this work displays higher sensitivity, wider linear detection range, and lower limit of detection (LOD). Additionally, TiO2 NRs/NiOOH/rMIP shows good selectivity, stability, and recovery rate, and has a promising application prospect in the actual detection of antibiotics.

2.
ACS Appl Mater Interfaces ; 14(33): 37716-37726, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35971946

RESUMO

In this study, chlorophyll-copper (ChlCu)-modified ZnO nanorods (ChlCu/ZnO) were prepared, and then sodium ethylenediamine tetraacetate (EDTA) was used to remove part of Cu2+ in ChlCu, leaving cavities with specific adsorption activity for Cu2+ in E-ChlCu/ZnO. Appropriate EDTA treatment improved the photoactivity of ChlCu/ZnO and the adsorption selectivity to Cu2+. However, excessive EDTA treatment might lead to the collapse of the ChlCu structure, resulting in a decrease in photoactivity. The E-ChlCu/ZnO sample with 8 h of ChlCu treatment and 2 h of EDTA treatment showed optimal photoactivity. The as-prepared E-ChlCu/ZnO exhibited activity as a light-activated nanozyme, which could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to blue under illumination, but when Cu2+ was present in the solution, this colorimetric reaction was inhibited; therefore, E-ChlCu/ZnO could be used for colorimetric detection of Cu2+. Because of the existence of specific cavities, E-ChlCu/ZnO showed excellent detection selectivity, a wide linear detection range (0-1 and 1-15 µM), and a low detection limit (0.024 µM) in the colorimetric detection of Cu2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...