Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
RSC Adv ; 14(13): 9020-9031, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38500630

RESUMO

Integrase plays an important role in the life cycle of HIV-1, and integrase strand transfer inhibitors (INSTIs) can effectively impair the viral replication. However, drug resistance mutations have been confirmed to decrease the efficacy of INSTI during the antiviral therapy. Herein, indole-2-carboxylic acid (1) was found to inhibit the strand transfer of integrase, and the indole nucleus of compound 1 was observed to chelate with two Mg2+ ions within the active site of integrase. Through optimization of compound 1, a series of indole-2-carboxylic acid derivatives were designed and synthesized, and compound 17a was proved to markedly inhibit the effect of integrase, with IC50 value of 3.11 µM. Binding mode analysis of 17a demonstrated that the introduced C6 halogenated benzene ring could effectively bind with the viral DNA (dC20) through π-π stacking interaction. These results indicated that indole-2-carboxylic acid is a promising scaffold for the development of integrase inhibitors.

2.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138510

RESUMO

As an important antiviral target, HIV-1 integrase plays a key role in the viral life cycle, and five integrase strand transfer inhibitors (INSTIs) have been approved for the treatment of HIV-1 infections so far. However, similar to other clinically used antiviral drugs, resistance-causing mutations have appeared, which have impaired the efficacy of INSTIs. In the current study, to identify novel integrase inhibitors, a set of molecular docking-based virtual screenings were performed, and indole-2-carboxylic acid was developed as a potent INSTI scaffold. Indole-2-carboxylic acid derivative 3 was proved to effectively inhibit the strand transfer of HIV-1 integrase, and binding conformation analysis showed that the indole core and C2 carboxyl group obviously chelated the two Mg2+ ions within the active site of integrase. Further structural optimizations on compound 3 provided the derivative 20a, which markedly increased the integrase inhibitory effect, with an IC50 value of 0.13 µM. Binding mode analysis revealed that the introduction of a long branch on C3 of the indole core improved the interaction with the hydrophobic cavity near the active site of integrase, indicating that indole-2-carboxylic acid is a promising scaffold for the development of integrase inhibitors.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Humanos , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Simulação de Acoplamento Molecular , Integrase de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Indóis/farmacologia , Indóis/uso terapêutico , Domínio Catalítico , Farmacorresistência Viral , Mutação
3.
J Med Chem ; 65(19): 12781-12801, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36191148

RESUMO

PI3K/Akt/mTOR signaling pathway is a validated drug target for cancer treatment that plays a critical role in controlling tumor growth, proliferation, and apoptosis. However, no FDA-approved PI3K/mTOR dual inhibitor exists. Thus, a candidate with a better curative effect and lower toxicity is still urgently needed. Herein, we design, synthesize, and evaluate compounds belonging to a novel series of 2-methyl-1H-imidazo[4,5-c]quinoline scaffold derivatives as PI3K/mTOR dual inhibitors. Among them, compound 8o was identified as a novel candidate with excellent kinase selectivity. It manifested remarkable antiproliferative activities against SW620 and HeLa cells. Western blot and immunohistochemical analysis results proved that 8o could regulate the PI3K/AKT/mTOR signaling pathway by inhibiting the phosphorylation of AKT and S6 proteins. Additionally, 8o presented a favorable pharmacokinetic property (oral bioavailability of 76.8%) and significant antitumor efficacy in vivo without obvious toxicity. Collectively, these results indicated that 8o is a promising agent for cancer treatment and merits further development.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Células HeLa , Humanos , Inibidores de MTOR , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR
4.
Eur J Med Chem ; 236: 114321, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35430559

RESUMO

Triple negative breast cancer (TNBC) is a complex and heterogeneous neoplasm, and till now no effective therapies are available. PARP inhibitors, which target DNA repair, are lethal to those cells that have impaired homologous recombination (HR) pathway. So, PARP inhibitors might exert promising results in the treatment of BRCA-mutated TNBC, but show compromised effect to those wild-type TNBC. Herein, we describe a novel PROTACs C8, which was obtained by conjugating PARP1/2 inhibitor Olaparib to KB02, can induce potent and specific degradation of PARP2 by recruiting DCAF16 E3 ligase for treatment of wild-type TNBC. Moreover, C8 exhibits therapeutic potential in TNBC cell lines MDA-MB-231 both in vitro and in vivo. These studies demonstrated that the DCAF16 E3 ligases can be used in PARP2 PROTACs design, and C8, as a novel PARP2 selective DCAF16 based PROTACs, might be a promising lead compound for the treatment of BRCA-wild-type TNBC.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas , Ubiquitina-Proteína Ligases , Linhagem Celular Tumoral , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Lab Invest ; 102(5): 494-504, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35264707

RESUMO

We explored the biological role of long non-coding RNA (lncRNA) MAPKAPK5_AS1 (MAAS) and the mechanism of its differential expression in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Differentially expressed lncRNAs in HBV-related HCC were determined using bioinformatics analysis. Gain-of-function experiments were conducted to evaluate the effect of MAAS on cell proliferation. A xenograft model was established for in vivo experiments. Dual-luciferase reporter assays, chromatin immunoprecipitation, co-immunoprecipitation, and methylated RNA immunoprecipitation were performed to elucidate the underlying molecular mechanisms. MAAS was upregulated in HBV-related HCC cancerous tissues and its high expression was closely related to the poor survival probability of patients. Functional assays revealed that MAAS overexpression facilitated the proliferation of HBV+HCC cells in vitro and in vivo. Mechanistically, MAAS promoted the MYC proto-oncogene (c-Myc)-induced transcriptional activation of cyclin-dependent kinase 4 (CDK4), CDK6, and S-phase kinase associated protein 2 via stabilizing c-Myc protein, thereby facilitating G1/S transition. The latter contributed to the paradoxical proliferation of HBV+HCC cells. Although MAAS was upregulated in HBV-related HCC cancerous tissues, it was highly expressed in M2 macrophages, a major phenotype of tumor-associated macrophages in HBV-related HCC, instead of in HBV+HCC cells. HBeAg, an HBV-associated antigen, further elevated the MAAS level in M2 macrophages by enhancing the methyltransferase-like 3-mediated N6-methyladenosine modification of MAAS. The increased MAAS in the M2 macrophages was then transferred to HBV+HCC cells through the M2 macrophage-derived exosomes, promoting cell proliferation. Our findings show that HBV+HCC cell-secreted HBeAg upregulates MAAS expression in M2 macrophages by affecting its m6A modification. The upregulated MAAS is then transferred to HBV+HCC cells via exosomes, facilitating the proliferation of HBV+HCC cells by targeting c-Myc.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Eur J Med Chem ; 224: 113680, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245947

RESUMO

The viral infectivity factor (Vif)-apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) axis has been recognized as a valid target for developing novel small-molecule therapies for acquired immune deficiency syndrome (AIDS) or for enhancing innate immunity against viruses. Our previous work reported the novel Vif antagonist 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide (2) with strong antiviral activity. In this work, through optimizations of ring C of 2, we discovered the more potent compound 6m with an EC50 of 0.07 µM in non-permissive H9 cells, reflecting an approximately 5-fold enhancement of antiviral activity compared to that of 2. Western blotting indicated that 6m more strongly suppressed the defensive protein Vif than 2 at the same concentration. Furthermore, 6m suppressed the replication of various clinical drug-resistant HIV strains (FI, NRTI, NNRTI, IN and PI) with relatively high efficacy. These results suggested that compound 6m is a more potent candidate for treating AIDS.


Assuntos
Desaminase APOBEC-3G/metabolismo , Fármacos Anti-HIV/química , HIV-1/metabolismo , ortoaminobenzoatos/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Viral/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
7.
Eur J Med Chem ; 222: 113573, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091209

RESUMO

A series of 2,4-diamino pyrimidine (DAPY) derivatives were designed, synthesized, and evaluated as inhibitors of focal adhesion kinase (FAK) with antitumor and anti-angiogenesis activities. Most compounds effectively suppressed the enzymatic activities of FAK, and the IC50s of 11b and 12f were 2.75 and 1.87 nM, respectively. 11b and 12f exhibited strong antiproliferative effects against seven human cancer cells, with IC50 values against two FAK-overexpressing pancreatic cancer cells (PANC-1 and BxPC-3) of 0.98 µM, 0.55 µM, and 0.11 µM, 0.15 µM, respectively. Moreover, 11b and 12f obviously suppressed the colony formation, migration, and invasion of PANC-1 cells in a dose-dependent manner. Meanwhile, these two compounds could induce the apoptosis of PANC-1 cells and arrest the cell cycle in G2/M phase according to the flow cytometry assay. Western blot revealed that 11b and 12f effectively inhibited the FAK/PI3K/Akt signal pathway and significantly decreased the expression of cyclin D1 and Bcl-2. In addition, compounds 11b and 12f potently inhibited the antiproliferative of HUVECs and obviously altered the cell morphology. 11b and 12f also significantly inhibited the migration, tube formation of HUVECs and severely impaired the angiogenesis in the zebrafish model. Overall, these results revealed the potential of compounds 11b and 12f as promising candidates for further preclinical studies.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quinase 1 de Adesão Focal/metabolismo , Humanos , Estrutura Molecular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 219: 113432, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33857728

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6), which are involved in dynamic regulation of cell cycle, play an indispensable role in controlling the tumor growth. Here, based on the scaffold of palbociclib, we designed and synthesized a series of covalent CDK4/6 inhibitors that targeted amino acid Thr107. The optimized compound C-13 exhibited potent in vitro anticancer activity against CDK4/6 with high selectivity over CDK4/6. Moreover, C-13 showed significant tumor growth inhibition in MDA-MB-231 tumor xenograft model (TGI of 93.49% at dose of 40 mg/kg) without causing significant weight loss and toxicity during the treatment period.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Piperazinas/química , Inibidores de Proteínas Quinases/química , Piridinas/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Piperazinas/metabolismo , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/metabolismo , Piridinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Onco Targets Ther ; 14: 711-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536763

RESUMO

INTRODUCTION: The poorly differentiated pancreatic adenocarcinoma (PDAC) is an extremely lethal neoplasm without effective biomarkers for early detection and prognosis prediction, which is characteristically unresponsive to chemotherapeutic regimens. This study aims at searching for key genes which could be applied as novel prognostic biomarkers and therapeutic targets in PDAC. METHODS: Clinical samples were collected and a comprehensive differential analysis of seven PDAC samples by integrating RNA-seq data of tumor tissues and matched normal tissues from both our cohort and gene expression profiling interactive analysis (GEPIA) were performed to discover potential prognostic genes in PDAC. Pathway enrichment analysis was carried out to determine the biological function of PDAC differentially expressed genes (DEGs), and protein-protein interaction (PPI) network was constructed for functional modules analysis. Real-time PCR was performed to validate expression of hub genes. RESULTS: A total of 126 PDAC-specific expressed genes identified from seven PDAC samples were predominantly enriched in cell adhesion, integral component of membrane, signal transduction and chemical carcinogenesis, IL-17 signaling pathway, indicating that obtained genes might play a unique role in PDAC tumorigenesis. Furthermore, survival analysis revealed that five genes (CEACAM5, KRT6A, KRT6B, KRT7, KRT17) which exhibited high expression levels in tumor tissues were obviously correlated with the prognosis of PDAC patients and KRT7 was positively correlated with KRT6A, KRT6B, KRT17 expression. In addition, real-time PCR demonstrated that the expression level of the hub genes was consistent with RNA-seq analysis. DISCUSSION: The current study suggested that CEACAM5, KRT6A, KRT6B, KRT7, and KRT17 may represent novel prognostic biomarkers as well as novel therapeutic targets for poorly differentiated PDAC.

10.
J Med Chem ; 64(3): 1558-1569, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33471528

RESUMO

Potent inhibitors of ALK are highly desired because of the occurrence of drug resistance. We herein firstly report the development of a rationally designed inhibitor, Con B-1, which can covalently bind to Cys1259, a cysteine located outside the ALK active site by linking a warhead with Ceritinib through a 2,2'-Oxybis(ethylamine) linker. The in vitro and in vivo assays showed ConB-1 is a potent selective ALKi with low toxicity to normal cells. In addition, the molecule showed significant improvement of anticancer activities and potential antidrug resistant activity compared with Ceritinib, demonstrating the covalent inhibitor of ALK can be a promising drug candidate for the treatment of NSCLC. This work may provide a novel perspective on the design of covalent inhibitors.


Assuntos
Quinase do Linfoma Anaplásico/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cisteína/efeitos dos fármacos , Animais , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Eur J Med Chem ; 212: 113150, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453602

RESUMO

Anaplastic lymphoma kinase (ALK) was involved in the development of various cancer types. Although several ALK inhibitors have been advanced to clinical trials, the emergence of drug resistance has limited the clinical application of them. To overcome the drug resistance, proteolysis targeting chimeras (PROTACs) could be an alternative strategy. In this study, a series of ALK degraders were designed and synthesized. The degraders were developed through the conjugation of LDK378 and CRBN E3 ubiquitin ligase ligands. Among all the molecules, compound B3 showed potent selective inhibitory activity to ALK and can decrease the cellular levels of ALK fusion proteins in a concentration- and time-dependent manner in H3122 cell line. Meanwhile, B3 showed improved anticancer activity in vitro comparing with LDK378 and the antiproliferative activity to xenograft tumor model was acceptable. All the results demonstrated that ALK degrader B3 with in vitro and in vivo anti-cancer activities was valuable for further investigation.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Sulfonas/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química , Células Tumorais Cultivadas
12.
Cancer Cell Int ; 21(1): 9, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407508

RESUMO

BACKGROUND: Duodenal papilla carcinoma (DPC) is a rare malignancy of the gastrointestinal tract with high recurrence rate, and the pathogenesis of this highly malignant neoplasm is yet to be fully elucidated. This study aims to identify key genes to further understand the biology and pathogenesis underlying the molecular alterations driving DPC, which could be potential diagnostic or therapeutic targets. METHODS: Tumor samples of three DPC patients were collected and integrating RNA-seq analysis of tumor tissues and matched normal tissues were performed to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were carried out to understand the potential bio-functions of the DPC differentially expressed genes (DEGs). Protein-protein interaction (PPI) network was constructed for functional modules analysis and identification of hub genes. qRT-PCR of clinical samples was conducted to validate the expression level of the hub genes. RESULTS: A total of 110 DEGs were identified from our RNA-seq data, GO and KEGG analyses showed that the DEGs were mainly enriched in multiple cancer-related functions and pathways, such as cell proliferation, IL-17signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway. The PPI network screened out five hub genes including IL-6, LCN2, FABP4, LEP and MMP1, which were identified as core genes in the network and the expression value were validated by qRT-PCR. The hub genes identified in this work were suggested to be potential therapeutic targets of DPC. DISCUSSION: The current study may provide new insight into the exploration of DPC pathogenesis and the screened hub genes may serve as potential diagnostic indicator and novel therapeutic target.

13.
Anticancer Agents Med Chem ; 21(17): 2351-2367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511941

RESUMO

BACKGROUND: Coumarin structures were widely employed in anti-cancer drug design. Herein we focused on the modifications of C4 and C6 positions on coumarin scaffold to get novel anti-cancer agents. OBJECTIVE: The objective of the current work was the synthesis and biological evaluation of a series of 4, 6-coumarin derivatives to get novel anticancer agents. METHODS: Thirty-seven coumarin derivatives were designed and synthesized, the antiproliferative activity of the compounds was evaluated against human cancer cell lines and non-cancerous cells by MTT assay. The bioactivities and underlying mechanisms of active molecules were studied and the ADMET characters were predicted. RESULTS: Among the compounds, 4-p-hydroxy phenol-6-pinacol borane coumarin (25) exhibited a promising anti- cancer activity to cancer cell lines in a dose-dependent manner and the toxicity to normal cells was low. The mechanism of action was observed by inducing G2/M phase arrest and apoptosis which was further confirmed via western blot. In silico ADMET prediction revealed that compound 25 is a drug-like small molecule with a favorable safety profile. CONCLUSION: The findings in this work may give vital information for further development of 6-pinacol borane coumarin derivatives as novel anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cumarínicos/farmacologia , Desenho de Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Biomol Struct Dyn ; 39(6): 1928-1939, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32178584

RESUMO

HDAC6 regulates the expression and activity of various tumor-related proteins, but currently there is no selective inhibitor targeting HDAC6 for clinical application. In order to discover novel HDAC6 inhibitors, virtual screening methods comprised of pharmacophore based virtual screening, molecular docking and molecular dynamics (MD) simulations were employed. 15 molecules were obtained after virtual screening. After in vitro bioassays, two of the hits showed inhibition activity against HDAC6, among which the inhibition activity of G1 to HDAC6 reached 81% at concentration of 20 µM. In addition, the inhibitory activity against HDAC1 and HDAC10 demonstrated that G1 and G10 were highly selective to HDAC6. The analysis of the binding modes of G1 and G10 provides a reference for further development of highly active HDAC6 inhibitors. Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Ligantes , Simulação de Acoplamento Molecular
15.
J Surg Oncol ; 123(1): 196-203, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32996132

RESUMO

BACKGROUND: Although pancreatic neuroendocrine tumors (PNETs) are considered indolent tumors, nearly half of cases metastasize to the liver, which can be lethal. However, effective indicators to predict aggressive behavior have not been well-established. METHODS: In the current study, we explored the prognostic significance of tumor budding in Grade 1-2 PNETs. Hematoxylin-eosin and immunohistochemically stained slides of surgically removed Grade 1-2 PNETs were evaluated. RESULTS: Tumor budding, a histomorphological parameter that corresponds to single cells or small cell clusters (<5 cells), was classified as low (0-10 buds) and high (>10 buds) grade. We observed that tumor budding was correlated with aggressive histopathological parameters, such as T stage, lymph node status, metastasis, and vascular invasion (p < .05). Univariate and multivariate analyses showed that high-grade budding was an independent predictive factor for postoperative liver metastasis (p = .012). Moreover, Grade 1-2 PNETs with high-grade budding was associated with worse overall survival and disease-free survival (p = .0015 and p = .0041, respectively). CONCLUSIONS: We conclude that tumor budding may serve as a valuable parameter in the risk stratification of postoperative liver metastasis and that incorporating tumor budding into histopathological reports may aid in appropriate clinical management.


Assuntos
Neoplasias Hepáticas/secundário , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/cirurgia , Neoplasias Pancreáticas/cirurgia , Período Pós-Operatório , Valor Preditivo dos Testes , Taxa de Sobrevida , Adulto Jovem
16.
Biochem Pharmacol ; 177: 113946, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247852

RESUMO

Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Difenilamina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas/antagonistas & inibidores , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Animais , Linhagem Celular Tumoral , Difenilamina/síntese química , Difenilamina/química , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Químicos , Estrutura Molecular , Células PC-3 , Neoplasias da Próstata/metabolismo , Proteínas/metabolismo
17.
Bioorg Med Chem Lett ; 29(24): 126638, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685340

RESUMO

Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (2-18) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 µM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure-activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors.


Assuntos
Benzamidas/síntese química , HIV-1/efeitos dos fármacos , Produtos do Gene vif do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Benzamidas/química , Relação Estrutura-Atividade
18.
Mol Pharm ; 16(11): 4582-4593, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31573817

RESUMO

Poor uptake of antitumor drugs by tumor cells is a critical challenge for anticancer therapeutics. Moreover, the deficiency of specific tumor selectivity for tumor sites may further limit the therapeutic efficacy and cause side effects in healthy regions of the body. Vincristine (VCR) is an effective antitumor drug; however, because of its severe nerve toxicity, short half-life, and fast metabolism, its clinical application is limited. Herein, novel anti-CD133 monoclonal antibody (CD133mAb)-targeted therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs) are smartly constructed for enhancing antiglioblastoma treatment. Superparamagnetic iron oxide nanoparticles (SPIO NPs) were first fabricated as nanocarrier cores, then encapsulated with human serum albumin (HSA), and loaded antitumor drug VCR. Then CD133mAb, which has specific affinity with the cell membrane CD133, was subsequently conjugated to form CD133mAb-decorated therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs). The influence of CD133mAb/TMAMbs on the viability, cell cycle, apoptosis, cell cytoskeleton, migration, and invasion of CD133-overexpressing U251 cells was explored. The CD133mAb-conjugated magnetic albumin microbeads exhibited a high drug loading capacity, stability and hemocompatibility, and active targeting ability by specific recognition of the CD133 surface antigen by the bioconjugation of CD133mAb. More importantly, the constructed therapeutic CD133mAb/TMAMbs have a specifically effective uptake via the CD133 transmembrane protein that is overexpressed in U251 glioblastoma cells and displayed an effective antitumor proliferation and invasive ability. Therefore, based on these results, the fabricated CD133mAb/TMAMbs demonstrate promising uses in brain cancer-targeted diagnosis and therapy.


Assuntos
Antígeno AC133/metabolismo , Albuminas/metabolismo , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Vincristina/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/metabolismo , Humanos , Magnetismo/métodos , Microesferas , Nanopartículas/química
19.
Eur J Med Chem ; 182: 111608, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437779

RESUMO

Androgen receptor (AR) has been a target of prostate cancer (PC) for nearly six decades. Recently, downregulating or degrading AR and the mutants especially the splice variant 7 (AR-V7) lacking ligand binding domain (LBD) emerged as an advantageous therapeutic approach to overcome drug resistance. Here, the structural modification of darolutamide resulted in the discovery of dual-action AR inhibitors and down-regulators. Unlike other traditional AR antagonists targeting the AR-LBD, compounds 4k and 4b not only inhibit the activities of wt-AR and AR-F876L mutant but also downregulate the protein expression of full-length (AR-full) and AR variant 7 (AR-V7) at mRNA level. In cell proliferation assays, compounds 4k and 4b exhibited better antiproliferative activities than darolutamide and enzalutamide against AR-V7-positive 22Rv1 cells and VCaP cells. In addition, 4k demonstrated better antitumor activity than clinically used enzalutamide in castration-resistant VCaP xenograft model. Collectively, combining the activities of AR inhibition and downregulation, compound 4k is proposed as an advantageous lead compound to disrupt AR signaling and overcome resistance.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Pirazóis/farmacologia , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Pirazóis/síntese química , Pirazóis/química , Receptores Androgênicos/genética , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 178: 667-686, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228810

RESUMO

PI3K/Akt/mTOR signaling pathway plays an important role in cancer cell growth and survival. In this study, a new class of molecules with skeleton of 4-phenyl-2H-benzo[b] [1,4]oxazin-3(4H)-one were designed and synthesized targeting this pathway. Bioassays showed that, among all the molecules, 8d-1 was a pan-class I PI3K/mTOR inhibitor with an IC50 of 0.63 nM against PI3Kα. In a wide panel of protein kinases assays, no off-target interactions of 8d-1 were identified. 8d-1 was orally available, and displayed favorable pharmacokinetic parameters in mice (oral bioavailability of 24.1%). In addition, 8d-1 demonstrated significant efficiency in Hela/A549 tumor xenograft models (TGI of 87.7% at dose of 50 mg/kg in Hela model) without causing significant weight loss and toxicity during 30 days treatment. Based on the bioassays, compound 8d-1 could be used as an anti-cancer drug candidate.


Assuntos
Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzoxazinas/administração & dosagem , Benzoxazinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...