Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 380: 129083, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100299

RESUMO

Bacterial-algal symbiosis (BAS) is a promising carbon neutrality technology to treat municipal wastewater. However, there are still non-trivial CO2 emissions in BAS due to the slow diffusion and biosorption of CO2. Aiming to reduce CO2 emissions, the inoculation ratio of aerobic sludge to algae was further optimized at 4:1 on the base of favorable carbon conversion. MIL-100(Fe) served as CO2 adsorbents was immobilized on polyurethane sponge (PUS) to increase the interaction with microbes. When MIL-100(Fe)@PUS was added to BAS in the treatment of municipal wastewater, zero CO2 emission was achieved and the carbon sequestration efficiency was increased from 79.9% to 89.0%. Most genes related to metabolic function were derived from Proteobacteria and Chlorophyta. The mechanism of enhanced carbon sequestration in BAS could be attributed to both enrichment of algae (Chlorella and Micractinium) and increased abundance of functional genes related to PS I, PS II and Calvin cycle in photosynthesis.


Assuntos
Chlorella , Águas Residuárias , Simbiose , Chlorella/metabolismo , Poliuretanos , Sequestro de Carbono , Dióxido de Carbono , Carbono/metabolismo
2.
Bioresour Technol ; 333: 125082, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33878502

RESUMO

High concentrations of nitrous oxide were recovered from partial nitrification treated leachate in a microbial electrolysis cell (MEC) inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa. N2O conversion efficiencies > 90% were achieved when a potential of 0.8 V was applied to the MEC. The ΔnosZ strain was enriched in the 0.8 V MEC, but Achromobacter dominated the non-current control. Nitric oxide reductase genes were highly expressed by ΔnosZ cells growing in the 0.8 V MEC, consistent with enhanced nitrous oxide production rates. Concentrations of phenazine derivatives and transcripts from phenazine biosynthesis genes were also high in the 0.8 V MEC. Phenazine derivatives are known to act as electron shuttles, enhance biofilm formation, and help ward off competitors, thereby increasing the survivability of the ΔnosZ strain in the MEC. These results show that applied current stabilized growth of the ΔnosZ strain in the reactor and allowed it to sustainably generate high concentrations of nitrous oxide.


Assuntos
Óxido Nitroso , Pseudomonas aeruginosa , Eletrólise , Incineração , Nitrificação , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...