Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(17): 4593-4601, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38639727

RESUMO

Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.

2.
Adv Mater ; 35(45): e2305409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592888

RESUMO

Unconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive. Here, using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments, it is shown that pristine monolayer 1H-TaS2 realizes a nodal superconducting state. Non-magnetic disorder drives the nodal superconducting state to a conventional gapped s-wave state. Furthermore, many-body excitations emerge close to the gap edge, signalling a potential unconventional pairing mechanism. The results demonstrate the emergence of nodal superconductivity in a van der Waals monolayer, providing a building block for van der Waals heterostructures exploiting unconventional superconducting states.

3.
ACS Nano ; 15(11): 17813-17819, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34730941

RESUMO

The combination of two-dimensional (2D) materials into vertical heterostructures has emerged as a promising path to designer quantum materials with exotic properties. Here, we extend this concept from inorganic 2D materials to 2D metal-organic frameworks (MOFs) that offer additional flexibility in realizing designer heterostructures. We successfully fabricate a monolayer 2D Cu-dicyanoanthracene MOF on a 2D van der Waals NbSe2 superconducting substrate. The structural and electronic properties of two different phases of the 2D MOF are characterized by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS), complemented by density-functional theory (DFT) calculations. These experiments allow us to follow the formation of the kagome band structure from Star of David-shaped building blocks. This work extends the synthesis and electronic tunability of 2D MOFs beyond the electronically less relevant metal and semiconducting surfaces to superconducting substrates, which are needed for the development of emerging quantum materials such as topological superconductors.

4.
Science ; 372(6544): 852-856, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016779

RESUMO

The quest for planar sp2-hybridized carbon allotropes other than graphene, such as graphenylene and biphenylene networks, has stimulated substantial research efforts because of the materials' predicted mechanical, electronic, and transport properties. However, their syntheses remain challenging given the lack of reliable protocols for generating nonhexagonal rings during the in-plane tiling of carbon atoms. We report the bottom-up growth of an ultraflat biphenylene network with periodically arranged four-, six-, and eight-membered rings of sp2-hybridized carbon atoms through an on-surface interpolymer dehydrofluorination (HF-zipping) reaction. The characterization of this biphenylene network by scanning probe methods reveals that it is metallic rather than a dielectric. We expect the interpolymer HF-zipping method to complement the toolbox for the synthesis of other nonbenzenoid carbon allotropes.

5.
J Phys Chem Lett ; 11(4): 1536-1541, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011142

RESUMO

Hydrogen atoms bonded within molecular cavities often undergo tunneling or thermal-transfer processes that play major roles in diverse physical phenomena. Such transfers may or may not entail intermediate states. The existence of such fleeting states is typically determined by indirect means, while their direct visualization has not been achieved, largely because their concentrations under equilibrium conditions are negligible. Here we use density-functional-theory calculations and scanning-tunneling-microscopy (STM) image simulations to predict that, under specially designed nonequilibrium conditions of voltage-enhanced high transfer rates, the cis-intermediate of the two-hydrogen transfer process in metal-free naphthalocyanine molecules adsorbed on Ag(111) surfaces would be visualizable in a composite image of double-C morphology. As guided by the theoretical predictions, at adjusted scanning temperature and bias, STM experiments achieve a direct visualization of the cis-intermediate. This work demonstrates a practical way to directly visualize elusive intermediates, which enhances understanding of the quantum dynamics of hydrogen atoms.

6.
Chemphyschem ; 20(18): 2297-2300, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31050870

RESUMO

On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3 Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.

7.
Phys Rev Lett ; 123(26): 266805, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951458

RESUMO

On-surface metal-organic nanoporous networks generally refer to adatom coordinated molecular arrays, which are characterized by the presence of well-defined and regular nanopores. These periodic structures constructed using two types of components confine the surface electrons of the substrate within their nanocavities. However, the confining (or scattering) strength that individual building units exhibit is a priori unknown. Here, we study the modification of the substrate's surface electrons by the interaction with a Cu-coordinated TPyB metal-organic network formed on Cu(111) and disentangle the scattering potentials and confinement properties. By means of STM and angle-resolved photoemission spectroscopy we find almost unperturbed free-electron-like states stemming from the rather weak electron confinement that yields significant coupling between adjacent pores. Electron plane wave expansion simulations match the superlattice induced experimental electronic structure, which features replicating bands and energy renormalization effects. Notably, the electrostatic potential landscape obtained from our ab initio calculations suggests that the molecules are the dominant scattering entities while the coordination metal atoms sandwiched between them act as leaky channels. These metal atom transmission conduits facilitate and enhance the coupling among quantum dots, which are prone to be exploited to engineer the electronic structure of surface electron gases.

8.
Chem Commun (Camb) ; 54(75): 10570-10573, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30182109

RESUMO

Bi-component supramolecular self-assembly of trimesic acid and benzenetribenzoic acid on Au(111) results in phase-separated mono-component porous structures. The pores of the two structures exhibit high selectivity in the binding of coronene molecules.

9.
Angew Chem Int Ed Engl ; 57(17): 4617-4621, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29446200

RESUMO

Multinuclear heterometallic nanoclusters with controllable stoichiometry and structure are anticipated to possess promising catalytic, magnetic, and optical properties. Heterometallic nanoclusters with precise stoichiometry of Bi3 Cu4 and Bi7 Cu12 can be stabilized in the scaffold of two-dimensional metal-organic networks on a Cu(111) surface through on-surface metallosupramolecular self-assembly processes. The atomic structures of the nanoclusters were resolved using scanning tunneling microscopy and density functional theory calculations. The nanoclusters feature highly symmetric planar hexagonal shapes and core-shell charge modulation. The clusters are arranged as triangular lattices with a periodicity that can be tuned by choosing molecules of different size. This work shows that on-surface metallosupramolecular self-assembly creates unique possibilities for the design and synthesis of multinuclear heterometallic nanoclusters.

10.
J Am Chem Soc ; 140(2): 570-573, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29283252

RESUMO

We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

11.
Faraday Discuss ; 204: 111-121, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28766625

RESUMO

Designing metal-organic frameworks with new topologies is a long-standing quest because new topologies often accompany new properties and functions. Here we report that 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene molecules coordinate with Cu atoms to form a two-dimensional framework in which Cu adatoms form a nanometer-scale demi-regular lattice. The lattice is articulated by perfectly arranged twofold and threefold pyridyl-Cu coordination motifs in a ratio of 1 : 6 and features local dodecagonal symmetry. This structure is thermodynamically robust and emerges solely when the molecular density is at a critical value. In comparison, we present three framework structures that consist of semi-regular and regular lattices of Cu atoms self-assembled out of 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene and trispyridylbenzene molecules. Thus a family of regular, semi-regular and demi-regular lattices can be achieved by Cu-pyridyl coordination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...