Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 783526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926299

RESUMO

Long non-coding RNAs (lncRNAs) are involved in fundamental biochemical and cellular processes. The neighbor of BRCA1 gene 2 (NBR2) is a long intergenic non-coding RNA (lincRNA) whose gene locus is adjacent to the tumor suppressor gene breast cancer susceptibility gene 1 (BRCA1). In human cancers, NBR2 expression is dysregulated and correlates with clinical outcomes. Moreover, NBR2 is crucial for glucose metabolism and affects the proliferation, survival, metastasis, and therapeutic resistance in different types of cancer. Here, we review the precise molecular mechanisms underlying NBR2-induced changes in cancer. In addition, the potential application of NBR2 in the diagnosis and treatment of cancer is also discussed, as well as the challenges of exploiting NBR2 for cancer intervention.

2.
Mol Med Rep ; 24(5)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523692

RESUMO

HOXC10 and mitochondrial fission regulator 2 (MTFR2) have been reported to be abnormally expressed in multiple types of cancer tissues. However, the effects of HOXC10 and MTFR2 on colorectal cancer (CRC) remain poorly understood. Therefore, the present study aimed to investigate the expression of HOXC10 and MTFR2 in CRC tissues and cells, and analyze their effects on CRC cell proliferation, invasion and migration. Reverse transcription­quantitative PCR and western blotting were used to detect the expression levels of MTFR2 and HOXC10 in tissues and cells. To investigate the association between MTFR2 and HOXC10, short hairpin RNA­MTFR2 and overexpression vector­HOXC10 were transfected into the cells, respectively. Furthermore, western blotting was performed to detect the expression levels of invasion­associated proteins. The proliferation, clone formation, invasion and migration of colorectal cancer cells were in turn analyzed by the Cell Counting Kit­8, clone formation, wound healing and Transwell assays. Japan Automotive Software Platform and Architecture software predicted the binding sites between HOXC10 and MTFR2, which was confirmed by the dual­luciferase reporter assay and chromatin immunoprecipitation. The present study demonstrated that HOXC10 and MTFR2 mRNA and protein expression levels were significantly upregulated in CRC tissues and cells. MTFR2 knockdown significantly inhibited CRC cell proliferation, clone formation, invasion and migration. Furthermore, HOXC10 was shown to interact with MTFR2. HOXC10 overexpression was able to significantly reverse the inhibitory effects of MTFR2 knockdown on CRC cells. In conclusion, HOXC10 overexpression activated MTFR2 expression to enhance the proliferation, clone formation, invasion and migration of CRC cells.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Mitocondriais/metabolismo , Adolescente , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Neoplasias Colorretais/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Invasividade Neoplásica/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...