Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(1): 116-131, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538325

RESUMO

A KOtBu-promoted, three-component cross-coupling of arenes(indoles/phenols), C60, and (per/poly)fluoroarenes has been established for the one-pot efficient synthesis of various 1,4-arene-bridged bis(polyfluoroaryl)-functionalized [60]fullerenes. This developed reaction system demonstrates good functional group compatibilities with broad substrate scope, which exhibits high regio- and chemoselectivities. Further control experiment succeeded in providing a one-pot protocol for the synthesis of various 1,2-N-(per/poly)fluoroarene-substituted 1,2-(3-indole)(hydro)fullerenes.

2.
RSC Adv ; 11(28): 17352-17359, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479671

RESUMO

Developing high-performance electrocatalysts for urea oxidation reaction (UOR) can not only solve the problem of environmental pollution, but also solve the problem of the energy crisis by producing hydrogen for electrodes. The preparation of porous three-dimensional nanostructures as efficient electrocatalysts has become important work. Here, we developed a novel three-dimensional (3D) nanostructure of NiFe(OH) X nanoparticles/nickel foam with a high active area by a simple electroplating method and a subsequent treatment with ferric ion solution. This structure shows much greater UOR activity than the control sample (Ni/Ni foam) with the potential of 1.395 V (vs. RHE) (with an overpotential of 1.025 V) for driving the current density of 100 mA cm-2 in 1.0 M KOH electrolyte with 0.33 M urea. This work not only provides rapid and large-scale preparation of a three-dimensional nanostructure, but also gives a new way to design and obtain high-performance electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...