Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894213

RESUMO

In this study, we investigated reconfigurable intelligent surface (RIS)-assisted device-to-device (D2D) communication systems over Nakagami-m fading channels. To enhance the reliability of RIS-assisted D2D communications, we utilized the rate-splitting multiple access (RSMA) technique to maximize the achievable ergodic rate for our considered systems. Specifically, both devices decoded the common symbol by treating private symbols as interference, and then each private symbol was decoded by treating the other as interference. In order to maximize the achievable ergodic rate at the destination, we analyzed the achievable ergodic rate of the RIS link and the D2D link, and the destination jointly decoded both symbols transmitted from the source and device by involving the maximum ratio combination (MRC). We obtained a closed-form expression for the achievable ergodic rate of the proposed RIS-assisted D2D communication system. Finally, we investigated the influence of power allocation factors and the number of reflective elements on the achievable ergodic rate. As seen by the numerical results, there was a good match between the analysis and simulation results, as well as significant superiority compared with existing works.

2.
Opt Express ; 29(6): 9363-9384, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820366

RESUMO

Entanglement purification is used to distill high quality entangled states from several noisy low quality entangled states, and it plays a key role in quantum repeater. The measurement-based entanglement purification protocol (MB-EPP) does not require local two-qubit gates or single-particle measurements on the noisy pairs and may offer significant advantages compared with the gate-based EPPs. We present an alternative MB-EPP in linear optics. Subsequently, we provide a detailed analysis on the realization of this MB-EPP using spontaneous parametric down conversion (SPDC) sources. By delicately designing the optical circuits, the double-pair emission noise caused by SPDC sources can be eliminated automatically. Combined with suitable quantum memory and entanglement swapping, this MB-EPP may have application potential in the implementation of a practical measurement-based quantum repeater.

3.
Opt Express ; 29(2): 571-583, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726290

RESUMO

High quality time-bin entanglement is widely exploited to achieve the purposes of fundamental tests of physics and the implementation of quantum communication protocols both in free space and optical fiber propagation. However, the imperfect approaches of generating time-bin entangled state will degrade its quality and limit its practical application. Entanglement purification is to distill high quality entangled states from low quality entangled states. In this paper, we present the first entanglement purification protocol (EPP) for time-bin entanglement. We first explain this EPP for two-photon time-bin entangled state and then extend it to the system of multi-photon time-bin entangled state. We also design a possible realization of this EPP with practical spontaneous parametric down conversion (SPDC) source. Differ from the conventional EPPs, this EPP does not require the sophisticated controlled-not (CNOT) gate or similar operations, and it uses the feasible sum-frequency generation (SFG) to perform the purification. Moreover, the double-pair noise emitted from the SPDC source can be eliminated automatically which is the other advantage of this EPP. If we combine with the faithful entanglement swapping, this EPP may have potential to be a part of full quantum repeaters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...