Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 116: 104349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689423

RESUMO

Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.


Assuntos
Infecções por Campylobacter , Campylobacter , Humanos , Animais , Ciprofloxacina/farmacologia , Campylobacter/genética , Pennsylvania/epidemiologia , Prevalência , Tipagem de Sequências Multilocus , Aves Domésticas , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária , Antibacterianos/farmacologia , Carne
2.
Microbiol Spectr ; : e0038123, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946722

RESUMO

The use of water contaminated with Salmonella for produce production contributes to foodborne disease burden. To reduce human health risks, there is a need for novel, targeted approaches for assessing the pathogen status of agricultural water. We investigated the utility of water microbiome data for predicting Salmonella contamination of streams used to source water for produce production. Grab samples were collected from 60 New York streams in 2018 and tested for Salmonella. Separately, DNA was extracted from the samples and used for Illumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector machine (SVM) models were implemented to predict Salmonella contamination. Model performance was assessed using 10-fold cross-validation repeated 10 times to quantify area under the curve (AUC) and Kappa score. CF models outperformed the other two algorithms based on AUC (0.86, CF; 0.81, RRF; 0.65, SVM) and Kappa score (0.53, CF; 0.41, RRF; 0.12, SVM). The taxa that were most informative for accurately predicting Salmonella contamination based on CF were compared to taxa identified by ALDEx2 as being differentially abundant between Salmonella-positive and -negative samples. CF and differential abundance tests both identified Aeromonas salmonicida (variable importance [VI] = 0.012) and Aeromonas sp. strain CA23 (VI = 0.025) as the two most informative taxa for predicting Salmonella contamination. Our findings suggest that microbiome-based models may provide an alternative to or complement existing water monitoring strategies. Similarly, the informative taxa identified in this study warrant further investigation as potential indicators of Salmonella contamination of agricultural water. IMPORTANCE Understanding the associations between surface water microbiome composition and the presence of foodborne pathogens, such as Salmonella, can facilitate the identification of novel indicators of Salmonella contamination. This study assessed the utility of microbiome data and three machine learning algorithms for predicting Salmonella contamination of Northeastern streams. The research reported here both expanded the knowledge on the microbiome composition of surface waters and identified putative novel indicators (i.e., Aeromonas species) for Salmonella in Northeastern streams. These putative indicators warrant further research to assess whether they are consistent indicators of Salmonella contamination across regions, waterways, and years not represented in the data set used in this study. Validated indicators identified using microbiome data may be used as targets in the development of rapid (e.g., PCR-based) detection assays for the assessment of microbial safety of agricultural surface waters.

3.
Cell Biochem Biophys ; 81(1): 97-104, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36309623

RESUMO

Autophagy plays various roles at different stages of ischemia reperfusion (I/R) injury in cardiomyocytes. It has been reported that tissue factor pathway inhibitor (TFPI) has a protective effect on I/R injury. This study aimed to determine the roles of TFPI in autophagy during the I/R injury process in cardiomyocytes and the possible mechanisms. An isolated hypoxia/reoxygenation (H/R) pattern of cardiomyocytes was established by the MIC101 system. The cell viability and oxidative stress of cardiomyocytes were detected by an MTT assay and ROS assay, respectively. The autophagy level was measured by Ad-mCherry-GFP-LC3B and MDC. We detected the expression levels of autophagy-related proteins by western blotting. After 2 h of hypoxia and 12 h of reoxygenation, the cardiomyocyte viability in the H/R group was significantly lower than that in the control group (p < 0.05) than in the H/R group. According to intracellular ROS production, the fluorescence intensity in the H/R group was enhanced compared with that in the negative control group, and it was weaker in the H/R + rTFPI group compared with the H/R group. The level of autophagy and the expression levels of autophagy-related proteins (LC3-II/LC3-I, Beclin-1 and PI3K) were markedly increased in the H/R group compared to the control group (p < 0.05) whereas the levels were markedly decreased in the H/R + rTFPI group compared to the H/R group (p < 0.05). TFPI could relieve cardiomyocyte injury by inhibiting the Class III PI3K/Beclin-1 pathway and oxidative stress; thus, TFPI decreased autophagy and protected cardiomyocytes induced by H/R injury. In conclusion, TFPI may be a new direction for the prevention of myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Humanos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Autofagia , Apoptose
4.
Microorganisms ; 9(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835426

RESUMO

Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.

5.
Front Microbiol ; 12: 576337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763036

RESUMO

Cocoa roasting produces and enhances distinct flavor of chocolate and acts as a critical control point for inactivation of foodborne pathogens in chocolate production. In this study, the inactivation kinetics of Salmonella enterica subsp. enterica serotype Oranienburg strain was assessed on whole cocoa beans using roasting protocols relevant to the fine chocolate industry. Beans were inoculated with 107-108 log10 CFU/bean of Salmonella Oranienburg and roasted at 100-150°C for 2-100 min. A greater than 5 log10 reduction of S. Oranienburg was experimentally achieved after 10-min roasting at 150°C. Data were fitted using log-linear and Weibull models. The log-linear models indicated that the roasting times (D) needed to achieve a decimal reduction of Salmonella at 100, 110, 115, 120, 130, and 140°C were 33.34, 18.57, 12.92, 10.50, 4.20, and 1.90 min, respectively. A Weibull model indicated a decrease in the Salmonella inactivation rate over time (ß < 1). Statistical analysis indicated that the Weibull model fitted the data better compared to a log-linear model. These data demonstrate the efficacy of cocoa roasting in inactivation of Salmonella and may be used to guide food safety decision-making.

6.
J Drug Target ; 29(6): 669-675, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33472448

RESUMO

Chemokines may promote the formation and instability of atherosclerotic plaque, which is the most common cause of acute coronary syndrome. The aim of this study was to clarify the function of monocyte chemotactic protein-3 (MCP-3) in the stability of atherosclerotic plaque, to determine the role of tissue factor pathway inhibitor (TFPI) on the development and stability of atherosclerotic plaques, and to further elucidate the anti-atherosclerotic mechanism of TFPI with the emphasis on chemokine MCP-3. We constructed an adenovirus-mediated shRNA against mouse MCP-3 (Ad-MCP-3-shRNA) and an adenovirus-containing TFPI (Ad-TFPI), and tranferred them in a model of vulnerable plaque in ApoE-/- mice respectively. Here, we reported that MCP-3-shRNA and TFPI could both reduce the plaque area and decrease the content of lipids and macrophages, on the contrary, the fibrous cap thickness and content of collagen and smooth muscle cells were increased. In addition, the expression of MCP-3 and CC chemokine receptor 2 (CCR2) was decreased by TFPI transfer. These data provide the first in vivo evidence that MCP-3 is a major contributor to the unstability of atherosclerotic plaque and TFPI may exert its anti-atherosclerotic effects and promote stabilisation of plaque at least partly through inhibiting MCP-3/CCR2 pathway, which may be a new therapeutic method for atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Quimiocina CCL7/genética , Lipoproteínas/genética , Placa Aterosclerótica/patologia , Adenoviridae/genética , Animais , Inativação Gênica , Humanos , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética
7.
Thromb Res ; 195: 151-157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32702563

RESUMO

Endothelium (EC) dysfunction plays an important role in vascular diseases, such as arteriosclerosis and hypoxia/reoxygenation (H/R) injury. Tissue factor pathway inhibitor (TFPI) is the only physiological inhibitor of the TF/FVIIa complex in vivo. This experiment aimed to determine the effect of TFPIα on H/R-induced EC injury and the possible mechanisms. The MIC101 hypoxia system was used to establish an EC H/R injury model in vitro. Our results showed that 6 h after reoxygenation, the EC injury in H/R group was higher than that in the control group, whereas after adding TFPIα, the EC injury was alleviate than that in H/R group. The level of ROS was higher in the H/R group than in the control group, while it was apparently lower in the H/R+TFPIα group than in the H/R group. After H/R, the number of autophagosomes and the autophagic flux were significantly increased, whereas TFPIα could decrease the autophagy level after H/R. The expressions of LC3-II/LC3-I, Beclin-1 and PI3K were obviously higher after H/R and lower after adding TFPIα. In conclusion, autophagy contributes to EC injury during the H/R period. TFPIα could decrease autophagy in ECs, and the mechanism might be class III PI3K/Beclin-1 pathway regulation.


Assuntos
Autofagia , Fosfatidilinositol 3-Quinases , Proteína Beclina-1 , Células Endoteliais , Humanos , Hipóxia
8.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499355

RESUMO

Twenty-seven Salmonella isolates were collected from four locations within an ecological wastewater treatment system located at The Pennsylvania State University and were subjected to whole-genome sequencing. The sequences obtained were used for in silico characterization, including serotyping and phylogenetic relatedness analysis.

9.
Ann Transl Med ; 8(6): 309, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355753

RESUMO

BACKGROUND: The present study was designed to examine whether cortistatin (CORT) could protect rats from myocardial injury induced by subcutaneously injecting isoproterenol (ISO) and to clarify the possible mechanisms. METHODS: Male Sprague-Dawley (SD) rats were placed at random into four groups: the control group, the ISO group, the ISO + CORT 25 µg/(kg·d) group, and the ISO + CORT 50 µg/(kg·d) group. Rat models of myocardial injury were established with the subcutaneous (s.c.) injections of 85 mg/kg ISO for 2 days. In the ISO+ CORT 25 µg/(kg·d) group and ISO+ CORT 50 µg/(kg·d) group, rats were given s.c. injections of CORT 25 µg/(kg·d) and CORT 50 µg/(kg·d) on the day before ISO, 3 days, respectively. Serum malondialdehyde (MDA) content, lactate dehydrogenase (LDH) activity, and creatine kinase isoenzyme (CK-MB) activity were measured by corresponding test kits. Western blot was applied to evaluate the expression of endoplasmic reticulum stress-related protein glucose regulatory protein 78 (GRP78), enhancer-binding protein homologous protein (CHOP), cysteinyl aspartate specific proteinase-12 (caspase-12), LC3-II, Beclin-1, and p62 in the rat myocardium. RESULTS: CORT alleviated the increased enzyme activities of serum LDH and CK-MB, and content of MDA (a typical marker of lipid peroxidation) in rats induced by ISO. CORT also prevented pathological myocardial injury in rats induced by ISO. Moreover, CORT attenuated the increased protein levels of GRP78, CHOP, and caspase-12, and reduced the increase of LC3-II, LC3-II/I, Beclin-1, and p62 in rats induced by ISO. CONCLUSIONS: These data demonstrate that CORT can attenuate ISO-induced acute myocardial injury in rats likely by reducing lipid peroxidation, and inhibiting endoplasmic reticulum stress and autophagy. This supports CORT as a potentially being a new target for preventing and treating myocardial injury and its related disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...