Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 18244-18251, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010900

RESUMO

The rapid characterization of nanoparticles for morphological information such as size and shape is essential for material synthesis as they are the determining factors for the optical, mechanical, and chemical properties and related applications. In this paper, we report a computational imaging platform to characterize nanoparticle size and morphology under conventional optical microscopy. We established a machine learning model based on a series of images acquired by through-focus scanning optical microscopy (TSOM) on a conventional optical microscope. This model predicts the size of silver nanocubes with an estimation error below 5% on individual particles. At the ensemble level, the estimation error is 1.6% for the averaged size and 0.4 nm for the standard deviation. The method can also identify the tip morphology of silver nanowires from the mix of sharp-tip and blunt-tip samples at an accuracy of 82%. Furthermore, we demonstrated online monitoring for the evolution of the size distribution of nanoparticles during synthesis. This method can be potentially extended to more complicated nanomaterials such as anisotropic and dielectric nanoparticles.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35649169

RESUMO

Controlling the nanoscale light-matter interaction using superfocusing hybrid photonic-plasmonic devices has attracted significant research interest in tackling existing challenges, including converting efficiencies, working bandwidths, and manufacturing complexities. With the growth in demand for efficient photonic-plasmonic input-output interfaces to improve plasmonic device performances, sophisticated designs with multiple optimization parameters are required, which comes with an unaffordable computation cost. Machine learning methods can significantly reduce the cost of computations compared to numerical simulations, but the input-output dimension mismatch remains a challenging problem. Here, we introduce a physics-guided two-stage machine learning network that uses the improved coupled-mode theory for optical waveguides to guide the learning module and improve the accuracy of predictive engines to 98.5%. A near-unity coupling efficiency with symmetry-breaking selectivity is predicted by the inverse design. By fabricating photonic-plasmonic couplers using the predicted profiles, we demonstrate that the excitation efficiency of 83% on the radially polarized surface plasmon mode can be achieved, which paves the way for super-resolution optical imaging.

3.
Small Methods ; 6(1): e2100900, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041280

RESUMO

Wearable piezoresistive sensors are being developed as electronic skins (E-skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade-off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low-cost, scalable, and high-performance piezoresistive sensor is developed with high sensitivity (0.144 kPa-1 ), extensive sensing range ( 0.1-15 kPa), fast response time (less than 150 ms), and excellent long-term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self-wrapped copper nanowire network. The developed nanowire-based spinosum microstructured FTEs are amenable to wearable electronics applications.


Assuntos
Grafite , Nanofios , Dispositivos Eletrônicos Vestíveis , Cobre , Humanos
4.
Nat Commun ; 12(1): 6868, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824270

RESUMO

Optical transmission and scattering spectroscopic microscopy at the visible and adjacent wavelengths denote one of the most informative and inclusive characterization methods in material research. Unfortunately, restricted by the diffraction limit of light, it cannot resolve the nanoscale variation in light absorption and scattering, diagnostics of the local inhomogeneity in material structure and properties. Moreover, a large quantity of nanomaterials has anisotropic optical properties that are appealing yet hard to characterize through conventional optical methods. There is an increasing demand to extend the optical hyperspectral imaging into the nanometer length scale. In this work, we report a super-resolution hyperspectral imaging technique that uses a nanoscale white light source generated by superfocusing the light from a tungsten-halogen lamp to simultaneously obtain optical transmission and scattering spectroscopic images. A 6-nm spatial resolution in the visible to near-infrared wavelength regime (415-980 nm) is demonstrated on an individual single-walled carbon nanotube (SW-CNT). Both the longitudinal and transverse optical electronic transitions are measured, and the SW-CNT chiral indices can be identified. The band structure modulation in a SW-CNT through strain engineering is mapped.

5.
Front Chem ; 7: 442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263694

RESUMO

Monolayer transition metal dichalcogenide (TMDs) are promising candidates for two-dimensional (2D) ultrathin, flexible, low-power, and transparent electronics and optoelectronics. However, the performance of TMD-based devices is still limited by the relatively low carrier mobility and the large contact resistance between the semiconducting 2D channel material and the contact metal electrodes. Phase-engineering in monolayer TMDs showed great promise in enabling the fabrication of high-quality hetero-phase structures with controlled carrier mobilities and heterojunction materials with reduced contact resistance. However, to date, general methods to induce phase-change in monolayer TMDs either employ highly-hostile organometallic compounds, or have limited compatibility with large-scale, cost-effective device fabrication. In this paper, we report a new photochemical method to induce semiconductor to metallic phase transition in monolayer MoS2 in a benign chemical environment, through a bench-top, cost-effective solution phase process that is compatible with large-scale device fabrication. It was demonstrated that photoelectrons produced by the band-gap absorption of monolayer MoS2 have enough chemical potential to activate the phase transition in the presence of an electron-donating solvent. This novel photochemical phase-transition mechanism advances our fundamental understanding of the phase transformation in 2D transition metal dichalcogenides (TMDs), and will open new revenues in the fabrication of atomically-thick metal-semiconductor heterostructures for improved carrier mobility and reduced contact resistance in TMD-based electronic and optoelectronic devices.

6.
Nanoscale ; 11(16): 7790-7797, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30951064

RESUMO

Chemically-synthesized single-crystalline silver nanowire (AgNW) probes can combine the scanning tunneling microscopy (STM) technique with tip-enhanced Raman scattering spectroscopy (TERS) for complementary morphological and chemical information with nanoscale spatial resolution. However, its performance has been limited by the blunt nanowire tip geometry, the insulating surfactant layer coating AgNW surfaces, and the thermal-induced mechanical vibrations. Here, we report a reproducible fabrication method for the preparation of sharp-tip AgNW-based TERS probes. By removing the polyvinylpyrrolidone (PVP) surfactant molecules from the AgNW surfaces for stable electrical conductivity and controlling the protruding length with µm-level accuracy for improved mechanical stability, we demonstrate atomic-resolution STM imaging with the sharp-tip AgNW probe. Furthermore, the sharp-tip AgNW has an excellent TER enhancement (∼1.1 × 106), which is about 66 folds of that achieved by regular AgNWs. Our experiments demonstrate that AgNWs with clean interfaces and the proper tip geometry can provide reliable and reproducible STM and TER characterizations, which remove the hurdles preventing the implementation of AgNW in STM-based near-field optical applications for a broad community.

7.
Nano Lett ; 19(1): 100-107, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30512954

RESUMO

The tip-enhanced Raman spectroscopy (TERS) imaging technique is designed to provide correlated morphological and chemical information with a nanoscale spatial resolution by utilizing the plasmonic resonance supported by metallic nanostructures at the tip apex of a scanning probe. However, limited by the scattering cross sections of these nanostructures, only a small fraction of the incident light can be coupled to the plasmonic resonance to generate Raman signals. The uncoupled light then directly excites background spectra with a diffraction-limited resolution, which becomes the background noise that often blurs the TERS image. Here, we demonstrate how this problem can be solved by physically separating the light excitation region from the Raman signal generation region on the scanning probe. The remote-excitation TERS (RE-TERS) probe, which can be fabricated with a facile, robust and reproducible method, utilizes silver nanoparticles as nanoantennas to mediate the coupling of free-space excitation light to propagating surface plasmon polaritons (SPPs) in a sharp-tip silver nanowire to excite Raman signals remotely. With this RE-TERS probe, a 10 nm spatial resolution was demonstrated on a single-walled carbon nanotube sample, and the strain distribution in a monolayer molybdenum disulfide (MoS2) was mapped.

8.
Nano Lett ; 16(11): 6896-6902, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27739683

RESUMO

Despite many efforts to fabricate high-aspect-ratio atomic force microscopy (HAR-AFM) probes for high-fidelity, high-resolution topographical imaging of three-dimensional (3D) nanostructured surfaces, current HAR probes still suffer from unsatisfactory performance, low wear-resistivity, and extravagant prices. The primary objective of this work is to demonstrate a novel design of a high-resolution (HR) HAR AFM probe, which is fabricated through a reliable, cost-efficient benchtop process to precisely implant a single ultrasharp metallic nanowire on a standard AFM cantilever probe. The force-displacement curve indicated that the HAR-HR probe is robust against buckling and bending up to 150 nN. The probes were tested on polymer trenches, showing a much better image fidelity when compared with standard silicon tips. The lateral resolution, when scanning a rough metal thin film and single-walled carbon nanotubes (SW-CNTs), was found to be better than 8 nm. Finally, stable imaging quality in tapping mode was demonstrated for at least 15 continuous scans indicating high resistance to wear. These results demonstrate a reliable benchtop fabrication technique toward metallic HAR-HR AFM probes with performance parallel or exceeding that of commercial HAR probes, yet at a fraction of their cost.

9.
Adv Mater ; 26(14): 2137-84, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24604701

RESUMO

Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies.


Assuntos
Nanofios/química , Semicondutores , Animais , Aniversários e Eventos Especiais , Fontes de Energia Elétrica , Endoscopia/instrumentação , Humanos , Nanotecnologia/métodos , Neurônios/fisiologia , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Processos Fotoquímicos
10.
Nat Nanotechnol ; 7(3): 191-6, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179570

RESUMO

One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.


Assuntos
Biologia Celular/instrumentação , Nanotubos , Nanofios , Análise de Célula Única/instrumentação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Pontos Quânticos , Análise de Célula Única/métodos
11.
Nano Lett ; 10(5): 1529-36, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20394412

RESUMO

In this perspective, we take a critical look at the research progress within the nanowire community for the past decade. We discuss issues on the discovery of fundamentally new phenomena versus performance benchmarking for many of the nanowire applications. We also notice that both the bottom-up and top-down approaches have played important roles in advancing our fundamental understanding of this new class of nanostructures. Finally we attempt to look into the future and offer our personal opinions on what the future trends will be in nanowire research.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Nanotecnologia/tendências , Semicondutores
12.
Proc Natl Acad Sci U S A ; 106(50): 21045-50, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955430

RESUMO

Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO(2) nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.


Assuntos
Nanopartículas Metálicas/química , Nanofios/química , Óptica e Fotônica/instrumentação , Prata , Elétrons , Desenho de Equipamento , Nanotecnologia/instrumentação , Compostos de Estanho
13.
Nano Lett ; 9(11): 3820-5, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19603791

RESUMO

The mechanism of tuning charge transport in electronic devices has recently been implemented into the nanofluidic field for the active control of ion transport in nanoscale channels/pores. Here we report the first synthesis of longitudinal heterostructured SiO(2)/Al(2)O(3) nanotubes. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. Such nanofluidic diodes could find applications in ion separation and energy conversion.

14.
Nano Lett ; 9(3): 1260-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19206219

RESUMO

Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO2, ZnO, Nb2O5) and rare earth oxide (Eu2O3, Sm2O3, Er2O3, Y2O3, Tb2O3, and Yb2O3) systems.

15.
Nat Mater ; 7(4): 303-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18297076

RESUMO

Modulated proton transport plays significant roles in biological processes such as ATP synthesis as well as in technologically important applications including, for example, hydrogen fuel cells. The state-of-the-art proton-exchange membrane is the sulphonated tetrafluoroethylene copolymer Nafion developed by DuPont in the late 1960s, with a high proton conductivity. However, actively switchable proton conduction, a functional mimic of the ion transport within a cell membrane, has yet to be realized. Herein, we report the electrostatic gating of proton transport within aligned mesoporous silica thin film. It is observed that surface-charge-mediated transport is dominant at low proton concentrations. We have further demonstrated that the proton conduction can be actively modulated by two-fourfold with a gate voltage as low as 1 V. Such artificial gatable ion transport media could have potential applications in nanofluidic chemical processors, biomolecular separation and electrochemical energy conversion.


Assuntos
Movimento (Física) , Prótons , Dióxido de Silício/química , Eletroquímica , Porosidade , Eletricidade Estática
16.
Nanotechnology ; 17(14): 3549-55, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19661603

RESUMO

Complex rare earth fluoride (NaRF(4), R = Ce,Y,Gd) nanocrystals of 30-50 nm were synthesized by hydrothermal and solvothermal techniques. The size, morphology and phase transition of the complex rare earth fluorides are discussed as the effects of different solvents, reaction time and temperature. Hexagonal phase NaRF(4) nanocrystals with good dispersibility can be prepared in the presence of EDTA using ethanol as the solvent. After doping with Yb(3+), Er(3+); Yb(3+), Tm(3+), and Eu(3+), some typical up-conversion and down-conversion photoluminescence was characterized and discussed.

18.
Chemistry ; 11(7): 2183-95, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15714538

RESUMO

The fundamental understanding of the relationship between crystal structure and the dynamic processes of anisotropic growth on the nanoscale, and exploration of the key factors governing the evolution of physical properties in functional nanomaterials, have become two of the most urgent and challenging issues in the fabrication and exploitation of functional nanomaterials with designed properties and the development of nanoscale devices. Herein, we show how structural and kinetic factors govern the tendency for anisotropic growth of such materials under hydrothermal conditions, and how the crystal structure and morphology influence the optical properties of Ln3+-doped nanocrystals. The synthesis of phase-pure and single-crystalline monoclinic, hexagonal, and tetragonal one-dimensional LnPO4 nanostructures of different aspect ratios by means of kinetically controlled hydrothermal growth processes is demonstrated. It is shown that the tendency for anisotropic growth under hydrothermal conditions can be enhanced simply by modifying the chemical potentials of species in the reaction solution through the use of carefully selected chelating ligands. A systematic study of the photoluminescence of various Eu3+-doped lanthanide phosphates has revealed that the optical properties of these nanophosphors are strongly dependent on their crystal structures and morphologies.

19.
Talanta ; 61(2): 157-64, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18969174

RESUMO

Combination of a novel NH(3) converter based on nanosized materials with chemiluminescence (CL) detector for the determination of NH(3) gas was demonstrated in this paper. NH(3) gas is oxidized on different nanosized catalysts to produce NO(x), which can react with luminol to generate CL emission. Eight nanosized materials were investigated as catalyst, and CL was detected from seven of them. The nanosized LaCoO(3) was chosen as the catalyst for preparing the converter because of its higher activity than others. Under the optimized conditions, the linear range of CL intensity versus concentration of NH(3) gas is 0.04-10 ppm (r=0.9951, n=14) with the detection limit of 0.014 ppm. The method offers advantages of long lifetime of the converter, fast response and high selectivity to NH(3). There was no response while the foreign substances, such as hydrogen, oxygen, nitrogen, formaldehyde, acetone and gasoline passing through the CL detection system, and the interference of CCl(4), ethanol, ethylene and toluene was insignificant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...