Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 35(5): 3106-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935526

RESUMO

MicroRNAs (miRNAs) play a pivotal role in cancer progression and development, representing novel therapeutic tools for cancer therapy. Forkhead box Q1 (FOXQ1) functions as an oncogene in various cancer types. However, the functional significance of FOXQ1 in cervical cancer remains unknown. In this study, we investigated the biological function of FOXQ1 in cervical cancer and tested whether or not FOXQ1 can be targeted and regulated by specific miRNAs. We found that FOXQ1 was highly expressed in cervical cancer cell lines. Knockdown of FOXQ1 by small interfering RNA (siRNA) significantly suppressed the proliferation and epithelial-mesenchymal transition (EMT) of cervical cancer cells. FOXQ1 was predicted as a target gene of microRNA-506 (miR-506), and this prediction was validated by dual-luciferase reporter assay. Quantitative real-time PCR and western blot analyses demonstrated that mRNA and protein expression was negatively regulated by miR-506. The expression of miR-506 was downregulated in cervical cancer tissues, and miR-506 expression was inversely correlated with FOXQ1 expression in cervical cancer. The overexpression of miR-506 dramatically suppressed the proliferation and EMT of cervical cancer cells that mimicked the suppression of FOXO1 siRNA. Furthermore, the restoration of FOXQ1 expression significantly reversed the inhibitory effect of miR-506. Overall, our study demonstrated that miR-506 inhibited the proliferation and EMT of cervical cancer cells by targeting FOXQ1 and provided evidence that the miR-506/FOXQ1 axis plays an important role in the pathogenesis of cervical cancer, representing potential molecular targets for the development of anticancer agents for cervical cancer treatment.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Neoplasias do Colo do Útero/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...