Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Plants (Basel) ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273832

RESUMO

This paper proposes an advanced deep learning model that integrates the Diffusion-Transformer structure and parallel attention mechanism for the tasks of growth estimation and disease detection in jujube forests. Existing methods in forestry monitoring often fall short in meeting the practical needs of large-scale and highly complex forest areas due to limitations in data processing capabilities and feature extraction precision. In response to this challenge, this paper designs and conducts a series of benchmark tests and ablation experiments to systematically evaluate and verify the performance of the proposed model across key performance metrics such as precision, recall, accuracy, and F1-score. Experimental results demonstrate that compared to traditional machine learning models like Support Vector Machines and Random Forests, as well as common deep learning models such as AlexNet and ResNet, the model proposed in this paper achieves a precision of 95%, a recall of 92%, an accuracy of 93%, and an F1-score of 94% in the task of disease detection in jujube forests, showing similarly superior performance in growth estimation tasks as well. Furthermore, ablation experiments with different attention mechanisms and loss functions further validate the effectiveness of parallel attention and parallel loss function in enhancing the overall performance of the model. These research findings not only provide a new technical path for forestry disease monitoring and health assessment but also contribute rich theoretical and experimental foundations for related fields.

2.
Commun Biol ; 7(1): 1154, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284885

RESUMO

Fish sex is largely influenced by steroid hormones, especially sex hormones. Here, we established a steroid hormone-free genetic model by mutation of cyp11a1 in Nile tilapia, which was confirmed by EIA assay. Gonadal phenotype and transcriptome analyses showed that the XX mutants displayed sex reversal from female to male but with defective spermatogenesis. Despite the sex reversal, the aromatase encoding gene cyp19a1a was continuously expressed in the gonads of the XX mutants, which might be caused by androgen deficiency. Whole-mount fluorescence in situ hybridization and transcriptome analysis showed that the gonads of the XX mutants firstly developed towards ovary but shifted to testis between 10 to 15 days after hatching. Detailed expression analysis of key sex differentiation pathway genes foxl3 and dmrt1 combined with apoptosis analysis revealed transdifferentiation of germ cells from female to male during sex reversal. Rescue experiments showed that both P5 and E2 treatment rescued the sex reversal of cyp11a1 mutant XX fish. Overall, our results revealed a transient ovary-like stage and transdifferentiation of germ cells from female to male in the early gonads of the steroid hormone-deprived cyp11a1 mutant XX fish.


Assuntos
Mutação , Ovário , Diferenciação Sexual , Animais , Feminino , Ovário/metabolismo , Masculino , Diferenciação Sexual/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Tilápia/genética , Tilápia/metabolismo , Processos de Determinação Sexual/genética
3.
Ecotoxicol Environ Saf ; 284: 117004, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270416

RESUMO

With the increase of cadmium content in the environment, the losses caused by cadmium-induced intestinal diseases to animal husbandry are increasing year by year. However, most of the on-going research activities focus on zoonotic diseases rather than exploring the mechanisms of animal disease occurrence from an anthropogenic environmental perspective. In this study, stressed Hu sheep under cadmium environmental exposure were selected to explore the mechanism of inflammatory bowel disease development. 16 s, untargeted metabolomics and transcriptomic multiomics were used to analyze the changes of their intestinal tract and intestinal contents. The results showed that the beneficial microorganisms (s_Ruminococcus_sp) in the Cd group were significantly decreased and the potentially harmful microorganisms were significantly enriched, and the changes of these microorganisms affected the changes of metabolites (caprylic acid) to a certain extent, resulting in a decrease in fatty acids in the intestine. Due to the combined effect of cadmium ion and fatty acid reduction, the PPAR signaling pathway was inhibited, and the fatty acid transport and binding were further reduced, causing very serious damage to the intestine. We revealed for the first time the mechanism of intestinal injury in Hu sheeps under cadmium environmental exposure and provided new prevention and treatment methods of intestinal diseases under the environmental exposure to trace metals.

4.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277395

RESUMO

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Assuntos
Hemípteros , Inseticidas , Lipossomos , Sesquiterpenos Policíclicos , Animais , Hemípteros/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
5.
J Colloid Interface Sci ; 678(Pt C): 111-119, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39284249

RESUMO

Although zeolitic imidazolate frameworks (ZIFs) possess the merits of orderly porosity, high permeability, and easy functionalization, the transformation of ZIFs into the real active species and the promotion of the catalytic efficiency and stability are still challenging. Herein, CoMo-based three-dimensional (3D) hollow nanocages composed of interconnected nanosheets are fabricated by in-situ etching metal-organic framework (ZIF-67) under the aid of MoO42-. X-ray photoelectron spectroscopy (XPS) and in-situ Raman confirm that Mo leaching can accelerate surface reconstruction and generate CoOOH active sites after continuous oxidation. Benefiting from the nanostructure and electronic properties after surface reconstruction, the engineered CoMo-30 exhibits the lowest overpotential of 280 mV at 30 mA cm-2 and robust stability over 110 h in 1 M KOH media for oxygen evolution reaction (OER), which significantly surpasses the other counterparts and commercial RuO2. Density functional theory (DFT) calculations indicate that CoMo-30 has a lower free energy of *O â†’ *OOH as rate determining step (RDS), suggesting that CoOOH sites play a crucial role in enhancing the activity and kinetics of OER. This work provides valuable insights into the rational design of hollow structures and the structure-composition-activity relationship during the electrochemical reaction process.

6.
Waste Manag ; 189: 166-176, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197185

RESUMO

Recently, hydrothermal coliquefaction of biomass and plastic waste has attracted considerable research interest. However, there is a notable gap in understanding the fundamental reaction mechanisms between biomass and plastics during coliquefaction. This study focused on the coliquefaction of biomass model compounds and plastic polymers using ReaxFF molecular dynamics simulations under both subcritical and supercritical water conditions. Molecular-level tracking and probing of the reaction mechanisms between biomass model compounds and plastics were conducted to purposefully enhance oil production. The study observed related radical reactions between by-product molecules, with detailed mechanisms primarily involving (1) ▪OH radicals released by aqueous phase molecules from biomolecules, transferring as H2O molecules and facilitating plastic depolymerization, and (2) C1-C4 radicals in the gaseous phase, emitted from biomolecule and plastic, colliding and subsequently recombining to form oil molecules. Moreover, the yield of multiple products from various mixtures were evaluated by considering the key reaction parameters including reaction temperature and feedstock blended ratio. An exploration into the effect of coliquefaction on oil yield was conducted to precisely identify the optimal coliquefaction conditions. The positive effect of coliquefaction was more pronounced between biomass model compounds and aromatic polymers compared to aliphatic polymers. Analysis of reaction mechanisms and product outcomes has shown that hydrothermal coliquefaction is a viable approach to improving oil production from multi-source organic solid waste.


Assuntos
Biomassa , Simulação de Dinâmica Molecular , Plásticos , Plásticos/química , Óleos/química , Polímeros/química
7.
Ecotoxicol Environ Saf ; 284: 116900, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168084

RESUMO

Botanical pesticides are one of the most promising alternatives to synthetic insecticides for green pest management. However, their efficacies must be further improved to meet real needs. Here we designed a nanoscale camptothecin (CPT) encapsulated in a star polycation (SPc) and determined its bioactivity against a devastating agricultural pest, Spodoptera frugiperda. The self-assembly of CPT/SPc complex was mainly driven by hydrogen bonding and Van der Waals forces to decrease the particle size from 789 to 298 nm. With the help of SPc, the contact angle of CPT decreased from 116° to 92° on maize leaves, and its retention was increased from 5.53 to 11.97 mg/cm2. The stability of SPc-loaded CPT was also improved in an alkaline environment, which is beneficial for its acting in lepidopteran insect guts. The CPT/SPc complex had stronger larvicidal activity and ovicidal activity against S. frugiperda than CPT alone, led to more complex transcriptomic changes in larvae, and had obvious adverse impacts on the activities of two digestive enzymes. Our findings demonstrated that the encapsulation of CPT by SPc-based nanodelivery system enabled better insecticidal activities against S. frugiperda, which holds great promise for the development of more efficient and sustainable pest control strategies to meet the demands of modern crop protection.

8.
Int J Biol Macromol ; 277(Pt 3): 134478, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102908

RESUMO

Currently, the predominant method for managing pests in orchards is chemical control. However, prolonged use of chemicals leads to resistance issues and raise ecological safety. A promising approach to tackle these challenges involves nanoparticles-mediated delivery system of dsRNA and pesticides. Despite its potential, this strategy has not been widely applied in controlling pests in pear orchards. In this study, we developed a nanoparticle-mediated ternary biopesticide to tackle resistance and safety concerns associated with calmodulin dsRNA and cyantraniliprole. Initially, we assessed the effectiveness of cyantraniliprole against two key pear pests, Grapholita molesta and Cacopsylla chinensis. Subsequently, we observed an upregualtion of genes CaM and CN following cyantraniliprole treatment. Furthermore, inhibiting or silencing GmCaM and CcGaM enhanced the sensitivity to cyantraniliprole more effectively. By introducing hairpin RNA into the pET30a-BL21 RNaseIII- system to silence GmCaM and CcCaM, we developed a nanoparticle-mediated co-delivery system that exhibited improved control over these two pests. Importantly, our research demonstrated that using reduced cyantraniliprole dosages through ternary biopesticides could help mitigate risks to natural enemies. Overall, our research emphasizes the enhanced effectiveness of ternary biopesticides in boosting the performance of dsRNA and pesticide against pear pests, while fostering environmental sustainability-a novel advancement in this field.


Assuntos
Calmodulina , Nanopartículas , Pirazóis , Pyrus , RNA de Cadeia Dupla , ortoaminobenzoatos , Animais , RNA de Cadeia Dupla/genética , Pyrus/química , Nanopartículas/química , Calmodulina/genética , Inseticidas/farmacologia
9.
Opt Lett ; 49(15): 4366-4369, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090935

RESUMO

Sub-aperture polishing is a key technique for fabricating ultra-precision optics. However, the existence of the polishing errors that are difficult to be compensated by physical modeling seriously affects the manufacturing accuracy and efficiency of optical components. To address this problem, a data-based systematic error extraction and compensation (DSEC) method was proposed to enhance the polishing accuracy on optics. To maximize the extraction quality in a small dataset condition, the wavelet transform is introduced into the extraction process, and the uncertainty of the piston term in the interferometer measurement is improved by L1-norm optimization. Furthermore, two typical error sources (loss of polishing fluid in the edge and the robot trajectory error) are used to verify the effectiveness of the proposed method; in experimental verification, the root mean square (RMS) of the surface figure of a ϕ85-mm mirror was decreased from 0.069λ to 0.017λ, and the RMS of the 610 × 440 mm mirrors was achieved at 0.019λ after the edge compensation, where the polishing accuracy can be improved by more than 4 times; additionally, the RMS of the surface figure with an effective aperture of 480 × 360 mm mirror was reached at 0.011λ after the trajectory error compensation, where the polishing accuracy can be improved by more than 2 times. The proposed DSEC model offers insights that will help achieve advancement in the sub-aperture polishing process.

10.
ACS Nano ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028863

RESUMO

Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.

11.
Vaccine ; 42(21): 126108, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39048466

RESUMO

BACKGROUND: Currently, there is limited understanding of the specific humoral immune response in BA.5-infected hemodialysis patients (BA.5-CHDPs) with previous COVID-19 vaccination. Additionally, the relevant risk factors for reinfection with XBB variants in BA.5-CHDPs have yet to be elucidated. METHOD: A total of 178 BA.5-CHDPs were enrolled in this study among 53 patients who had previous vaccination. To compare hemodialysis patients in both unvaccinated and vaccinated for their immune response to the BA.5 subtype infection, we assessed serum levels of anti-ancestral-S1-IgG, anti-BA.5-receptor binding domain (RBD)-IgG, and anti-XBB.1.16-RBD-IgG using enzyme-linked immunosorbent assay, the neutralizing antibody titer against BA.5 and XBB.1.16 was determined using pseudovirus neutralization assays. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with severe infection, the magnitude of specific humoral immunity and susceptibility to XBB variants reinfection. RESULT: Our findings indicate that BA.5-CHDPs with full or booster vaccinations have higher levels of anti-ancestral-S1-IgG than unvaccinated individuals. However, levels of anti-BA.5-RBD-IgG and anti-XBB.1.16-RBD-IgG are much lower. Booster-vaccinated BA.5-CHDPs have significantly higher levels of BA.5 and XBB.1.16 specific antibodies and neutralizing antibodies than unvaccinated patients. Low globulin levels and shorter hemodialysis duration are independent risk factors for XBB reinfection in BA.5-CHDPs. CONCLUSION: Although XBB.1.16 specific neutralizing antibody levels were low in BA.5-CHDPs, these levels cannot predict the risk of reinfection; other potential risk factors need to be investigated in the future.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunidade Humoral , Diálise Renal , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , China/epidemiologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Reinfecção/imunologia , Fatores de Risco , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação
12.
Virology ; 597: 110142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959723

RESUMO

OBJECTIVES: The specific humoral immune response resulting from inactivated vaccination following by BA.5 infection, and predictors of XBB variants re-infection in BA.5 infection-recovered nasopharyngeal carcinoma (BA.5-RNPC) patients, were explored. METHODS: Serum SARS-CoV-2 specific antibody levels were assessed using enzyme-linked-immunosorbent-assay. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with the magnitude of specific humoral immunity and susceptibility to re-infection by XBB variants. RESULTS: Our data demonstrates that SARS-CoV-2 specific antibody levels were comparable between BA.5-RNPC patients and BA.5 infection-recovered-non-cancerous (BA.5-RNC) individuals. Specifically, serum levels of anti-ancestral-S1-IgG, anti-ancestral-nucleocapsid-protein (NP)-IgG, anti-BA.5-receptor binding domain (RBD)-IgG and anti-XBB.1.1.6-RBD-IgG were higher in BA.5-RNPC patients compared to those without a prior infection. Compared to BA.5-RNPC patients without vaccination, individuals who received inactivated vaccination exhibited significantly higher levels of anti-ancestral-S1-IgG and anti-XBB.1.16-RBD-IgG. Multivariate logistic regression analysis revealed that inactivated vaccination was the most significant predictor of all tested SARS-CoV-2 specific antibodies response. Subsequent analysis indicated that a low globulin level is an independent risk factor for XBB re-infection in BA.5-RNPC patients. CONCLUSIONS: The SARS-CoV-2 specific antibodies have been improved in vaccinated BA.5-RNPC patients. However, the baseline immunity status biomarker IgG is an indicators of XBB variant re-infection risk in BA.5-RNPC patients.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Reinfecção , SARS-CoV-2 , Humanos , Masculino , Feminino , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Fatores de Risco , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Reinfecção/imunologia , Reinfecção/virologia , Adulto , Imunoglobulina G/sangue , Idoso , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunidade Humoral , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
13.
Plant Physiol Biochem ; 213: 108815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861820

RESUMO

Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.


Assuntos
Álcoois Graxos , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Álcoois Graxos/farmacologia , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polímeros/química , Polímeros/farmacologia , Clorofila/metabolismo
14.
J Diabetes Metab Disord ; 23(1): 1223-1231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932880

RESUMO

Purpose: As lifestyle changes, there is an increasing number of type 2 diabetes mellitus (T2DM) patients in China. The present study aimed to investigate the predictive value of the lipid accumulation product (LAP) for T2DM in Chinese elderlies over 65 years. Methods: The present cross-sectional study recruited 2,092 adults from communities of Pudong New Area of Shanghai. Questionnaires were filled and anthropometric and laboratory examinations were completed by all participants. The predictive value of different risk factors for T2DM was analyzed using the receiver operating characteristics curve (ROC). Results: LAP was found to be closely related to T2DM (adjusted OR: 0.613, 95% CI: 0.581-0.645). Fasting plasma glucose (FPG), LAP, and urea nigrogen (UN) were associated with T2DM in females, whereas FPG, LAP, neck circumference (NC) were associated with T2DM in males. When the cut-off value was 33.8, LAP displayed the optimal predictive performance. A gender difference was observed with an LAP of 37.95 demonstrating the best predictive value in males (AUC = 0.604, 95% CI: 0.577-0.652) and 60.2 in females (AUC = 0.617, 95% CI: 0.574-0.660), respectively. Conclusion: LAP is more significantly associated with the risk of T2DM in elderlies than FPG, UN or NC, and it serves as a strong predictor of T2DM. However, this is impacted by FPG and neck circumference to a certain extent. Future large-scale studies are needed to confirm its efficacy in predicting diabetes.

15.
Inorg Chem ; 63(27): 12582-12592, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917407

RESUMO

The InP-based quantum dots (QDs) have attracted much attention in the field of photocatalytic H2 evolution. However, a shell should be used for InP-based photocatalytic systems to passivate the numerous surface defects. Different from the traditional InP-based core/shell QDs with Type-I or Type-II band alignment, herein, the "reverse Type-II" core/shell QDs in which both the conduction and valence bands of shell materials are more negative than those of core materials have been well-designed by regulating the ratio of Cd/Zn of the alloyed ZnxCd1-xS shell. The reverse Type-II band alignment would realize the spatial separation of photogenerated carriers. More importantly, the photogenerated holes tend to rest on the shell in the reverse Type-II QDs, which facilitate hole transfer to the surface, the rate-determining step for solar H2 evolution using QDs. Therefore, the obtained InP/Zn0.25Cd0.75S core/shell QDs exhibit superior photocatalytic activity and stability under visible light irradiation. The rate of solar H2 evolution reaches 376.19 µmol h-1 mg-1 at the initial 46 h, with a turnover number of ∼2,157,000 per QD within 70 h irradiation.

16.
Insect Biochem Mol Biol ; 171: 104150, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871132

RESUMO

Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.


Assuntos
Quitinases , Muda , Tetranychidae , Animais , Muda/genética , Quitinases/genética , Quitinases/metabolismo , Tetranychidae/genética , Tetranychidae/crescimento & desenvolvimento , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo
17.
Methods ; 229: 41-48, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880433

RESUMO

Graph neural networks (GNNs) have gained significant attention in disease prediction where the latent embeddings of patients are modeled as nodes and the similarities among patients are represented through edges. The graph structure, which determines how information is aggregated and propagated, plays a crucial role in graph learning. Recent approaches typically create graphs based on patients' latent embeddings, which may not accurately reflect their real-world closeness. Our analysis reveals that raw data, such as demographic attributes and laboratory results, offers a wealth of information for assessing patient similarities and can serve as a compensatory measure for graphs constructed exclusively from latent embeddings. In this study, we first construct adaptive graphs from both latent representations and raw data respectively, and then merge these graphs via weighted summation. Given that the graphs may contain extraneous and noisy connections, we apply degree-sensitive edge pruning and kNN sparsification techniques to selectively sparsify and prune these edges. We conducted intensive experiments on two diagnostic prediction datasets, and the results demonstrate that our proposed method surpasses current state-of-the-art techniques.


Assuntos
Redes Neurais de Computação , Humanos , Aprendizado de Máquina , Algoritmos
18.
Insect Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728615

RESUMO

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

19.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
20.
Insect Biochem Mol Biol ; 169: 104126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663758

RESUMO

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.


Assuntos
Calmodulina , Ácidos Graxos , Ceras , Animais , Calmodulina/metabolismo , Calmodulina/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Ceras/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Vias Biossintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA