Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jpn J Radiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409300

RESUMO

PURPOSE: To investigate the role of magnetic resonance imaging (MRI) based on radiomics using T2-weighted imaging fat suppression (T2WI-FS) and contrast enhanced T1-weighted imaging (CE-T1WI) sequences in differentiating T1-category nasopharyngeal carcinoma (NPC) from nasopharyngeal lymphoid hyperplasia (NPH). MATERIALS AND METHODS: This study enrolled 614 patients (training dataset: n = 390, internal validation dataset: n = 98, and external validation dataset: n = 126) of T1-category NPC and NPH. Three feature selection methods were used, including analysis of variance, recursive feature elimination, and relief. The logistic regression classifier was performed to construct the radiomics signatures of T2WI-FS, CE-T1WI, and T2WI-FS + CE-T1WI to differentiate T1-category NPC from NPH. The performance of the optimal radiomics signature (T2WI-FS + CE-T1WI) was compared with those of three radiologists in the internal and external validation datasets. RESULTS: Twelve, 15, and 15 radiomics features were selected from T2WI-FS, CE-T1WI, and T2WI-FS + CE-T1WI to develop the three radiomics signatures, respectively. The area under the curve (AUC) values for radiomics signatures of T2WI-FS + CE-T1WI and CE-T1WI were significantly higher than that of T2WI-FS (AUCs = 0.940, 0.935, and 0.905, respectively) for distinguishing T1-category NPC and NPH in the training dataset (Ps all < 0.05). In the internal and external validation datasets, the radiomics signatures based on T2WI-FS + CE-T1WI and CE-T1WI outperformed T2WI-FS with no significant difference (AUCs = 0.938, 0.925, and 0.874 for internal validation dataset and 0.932, 0.918, and 0.882 for external validation dataset; Ps > 0.05). The radiomics signature of T2WI-FS + CE-T1WI significantly performed better than three radiologists in the internal and external validation datasets. CONCLUSION: The MRI-based radiomics signature is meaningful in differentiating T1-category NPC from NPH and potentially helps clinicians select suitable therapy strategies.

2.
Int J Biol Macromol ; 261(Pt 2): 129905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311136

RESUMO

Efficient bone reconstruction, especially of the critical size after bone damage, remains a challenge in the clinic. Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation is considered as a promising strategy for bone repair. Nicotinamide adenine dinucleotide (NAD+) regulating BMSC fate and cellular function enhance osteogenesis, but is hardly delivered and lack of targeting. Herein, a novel and biocompatible scaffold was fabricated to locally deliver a precursor of NAD+, nicotinamide mononucleotide (NMN) to the bone defect site, and its bone repair capability and healing mechanism were clarified. NMN-based hyaluronic acid methacryloyl hybrid hydrogel scaffold (denoted as NMN/HAMA) was prepared via photopolymerization. In vitro RT-qPCR analysis, western blotting, Elisa and alizarin red S staining assays demonstrated that the NMN/HAMA hybrid hydrogel regulated BMSCs cellular function in favour of osteogenic differentiation and mineralization by upregulating the mRNA and proteins expression of the osteogenic genes type I pro-collagen (Col-1), bone morphogenic protein 4 (BMP4), and runt-related transcription factor 2 (RUNX2) via the SIRT1 pathway. Implantation of such hybrid hydrogels significantly enhanced bone regeneration in rodent critical calvarial defect models. Furthermore, restoration of the bone defect with NMN administration was inhibited in Prx1 Cre+; SIRT1flox/flox mice, confirming that the NMN/HAMA hybrid hydrogel scaffold promoted bone regeneration via the SIRT1-RUNX2 pathway. These results imply that NMN-based scaffold may be a promising and economic strategy for the treatment of bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Ácido Hialurônico/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regeneração Óssea , Diferenciação Celular
3.
Small ; 20(2): e2304721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670209

RESUMO

Wide bandgap semiconductors, particularly In2 O3 :Sn (ITO), are widely used as transparent conductive electrodes in optoelectronic devices. Nevertheless, due to the strohave beenng scattering probability of high-concentration oxygen vacancy (VO ) defects, the mobility of ITO is always lower than 40 cm2  V-1  s-1 . Recently, hydrogen-doped In2 O3 (In2 O3 :H) films have been proven to have high mobility (>100 cm2  V-1  s-1 ), but the origin of this high mobility is still unclear. Herein, a high-resolution electron microscope and theoretical calculations are employed to investigate the atomic-scale mechanisms behind the high carrier mobility in In2 O3 :H films. It is found that VO can cause strong lattice distortion and large carrier scattering probability, resulting in low carrier mobility. Furthermore, hydrogen doping can simultaneously reduce the concentration of VO , which accounts for high carrier mobility. The thermal stability and acid-base corrosion mechanism of the In2 O3 :H film are investigated and found that hydrogen overflows from the film at high temperatures (>250 °C), while acidic or alkaline environments can cause damage to the In2 O3 grains themselves. Overall, this work provides insights into the essential reasons for high carrier mobility in In2 O3 :H and presents a new research approach to the doping and stability mechanisms of transparent conductive oxides.

4.
Talanta ; 218: 121210, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797934

RESUMO

Two spirobifluorene-based two-photon fluorescent probes for the detection of hydrazine, namely SPF-MN and SPF- PA, have been designed and synthesized. Along with the addition of hydrazine to a solution of SPF-MN, both a colorimetric change from yellow to colorless and a fluorescence change from yellow to blue (Under 365 nm UV light) can be observed by ''naked-eye''. Probe SPF- PA displayed response toward hydrazine with fluorescence enhancement. The detection limits are 6.9 µM for SPF- PA and 0.29 µM for SPF-MN, respectively. Moreover, SPF-MN and SPF- PA can be used as two-photon fluorescent probes for hydrazine with large two-photon absorption cross-sections and used for the imaging of hydrazine in living cells. Specially, SPF-PA can located at the surface of the cells, and it is the first fluorescent probe which possesses the capability of sensing intercellular hydrazine. Besides, SPF-MN is the first colorimetric two-photon fluorescent probe for meeting the criteria of both hydrazine bioimaging and visual detection of hydrazine in solution.


Assuntos
Corantes Fluorescentes , Hidrazinas , Colorimetria , Humanos , Fótons , Espectrometria de Fluorescência
5.
Neural Regen Res ; 12(12): 2059-2066, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29323046

RESUMO

Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1) and left primary motor cortex (BA4), and left BA1 and left somatosensory association cortex (BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-ROC-17013566).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...