Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252336

RESUMO

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa-1 within the range of 0-2 kPa), a relatively large feasible range (0-15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.

2.
Nanoscale Res Lett ; 15(1): 34, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020339

RESUMO

In this work, we fabricate poly(vinylpyrrolidone) (PVP)-treated Ruddlesden-Popper two-dimensional (quasi-2D) PPA2(CsPbBr3)2PbBr4 perovskite light-emitting diodes (PeLEDs) and achieved a peak brightness of 10,700 cd m-2 and peak current efficiency of 11.68 cd A-1, threefold and tenfold higher than that of the pristine device (without PVP), respectively. It can be attributed that the additive of PVP can suppress the pinholes of perovskite films owing to the excellent film-forming property, inhibiting the leakage current. Besides, PVP treatment facilitates the formation of compact perovskite films with defect reduction. Our work paves a novel way for the morphology modulation of quasi-2D perovskite films.

3.
Nanoscale Res Lett ; 14(1): 318, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535227

RESUMO

Although numerous fluorescent probes are designed to detect the pH value in the past decades, developing fluorescent probes for extreme alkalinity (pH > 14) detection in aqueous solution is still a great challenge. In this work, we utilized 1H-imidazo[4,5-f][1, 10] phenanthroline (IP) group as the recognition group of hydroxyl ion and introduced two triethylene glycol monomethyl ether groups to improve its solubility. This IP derivative, BMIP, possessed good solubility (25 mg/mL) in water. It displayed high selectivity toward extreme alkalinity (pH > 14) over other ions and pH (from extreme acidity to pH = 14). From 3 to 6 mol/L OH-, the exact concentration of OH- could be revealed by BMIP and the whole detection process just needed a short time (≤ 10 s). Meanwhile, it exhibited good anti-interference ability and repeatability during the detection process. Through optical spectra and NMR analysis, its detection mechanism was proved to be deprotonation by hydroxyl ion and then aggregation-induced enhanced emission. Our study presents a new basic group based on which researchers can develop new fluorescent probes that can detect extreme alkalinity (pH > 14) in aqueous solution.

4.
Nanoscale Res Lett ; 14(1): 255, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31352526

RESUMO

Quasi-two-dimensional (2D) perovskites have received intensive attention as a new class of luminescent materials owing to large exciton binding energy and high photoluminescence efficiency. However, there usually contains a mixture of phases in these materials, and excessive low-dimensional phase perovskite is harmful for luminescence efficiency owing to the strong exciton-phonon quenching at the room temperature. Herein, a simple and effective method is proposed to suppress the growth of low-dimensional phase components in quasi-2D perovskite film via carefully adjusting the molar ratio of cesium bromide (CsBr) and phenylpropylammonium bromide (PPABr). The device based on this optimized film has achieved a peak brightness of 2921 cd m-2 and peak current efficiency of 1.38 cd A-1, far away higher than that of the pristine CsPbBr3 device. This research proves a new way for modulating the phase composition in quasi-2D perovskites to fabricate highly efficient perovskite light-emitting diodes (PeLEDs).

5.
Polymers (Basel) ; 11(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269634

RESUMO

The rational design of high-performance flexible pressure sensors with both high sensitivity and wide linear range attracts great attention because of their potential applications in wearable electronics and human-machine interfaces. Here, polyaniline nanofiber wrapped nonwoven fabric was used as the active material to construct high performance, flexible, all fabric pressure sensors with a bottom interdigitated textile electrode. Due to the unique hierarchical structures, large surface roughness of the polyaniline coated fabric and high conductivity of the interdigitated textile electrodes, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity of 46.48 kPa-1 in a wide linear range (<4.5 kPa), rapid response/relaxation time (7/16 ms) and low detection limit (0.46 Pa). Based on these merits, the practical applications in monitoring human physiological signals and detecting spatial distribution of subtle pressure are demonstrated, showing its potential for health monitoring as wearable electronics.

6.
ACS Appl Mater Interfaces ; 11(5): 5264-5275, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644720

RESUMO

Highly dispersed copper nanowire (CuNW) is an essential prerequisite for its practical application in various electronic devices. At present, the dispersion of CuNW is almost realized through the steric hindrance effect of polymers. However, the high post-treatment temperature of polymers makes this dispersion mechanism impractical for many actual applications. Here, after investigating the relationship between the electrostatic dispersion force and influence factors, an electrostatic dispersion mechanism is refined by us. Under the guidance of this mechanism, high dispersion of CuNW and a record low post-treatment temperature (80 °C) are realized simultaneously. The high dispersity endows CuNW with good stability (-45.66 mV) in water-based ink, high uniformity (65.7 ± 2.5 Ω sq-1) in the prepared transparent conducting film (TCF) (23 cm × 23 cm), and industrial film preparation process, which are the issues that hinder the widespread application of CuNW-based TCF at present. The low post-treatment temperature makes the application of CuNW possible on any substrate. In addition, the charge modifier, 2-mercaptoethanol, enables CuNW to resist oxidation well. Finally, flexible optoelectronic devices employing the CuNW film as the electrode are fabricated and show efficiencies comparable to those of optoelectronic devices on indium tin oxide/glass.

7.
Sci Rep ; 6: 26262, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185635

RESUMO

In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

8.
Sci Rep ; 5: 10697, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26023882

RESUMO

In this manuscript, we demonstrated a highly efficient DCJTB emission with delayed fluorescent exciplex TCTA:3P-T2T as the host. For the 1.0% DCJTB doped concentration, a maximum luminance, current efficiency, power efficiency and EQE of 22,767 cd m(-2), 22.7 cd A(-1), 21.5 lm W(-1) and 10.15% were achieved, respectively. The device performance is the best compared to either red OLEDs with traditional fluorescent emitter or traditional red phosphor of Ir(piq)3 doped into CBP host. The extraction of so high efficiency can be explained as the efficient triplet excitons up-conversion of TCTA:3P-T2T and the energy transfer from exciplex host singlet state to DCJTB singlet state.

9.
Nanoscale ; 7(21): 9427-32, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25959639

RESUMO

A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by PEDOT: PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.

10.
Sci Rep ; 5: 10234, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975371

RESUMO

Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant. The micro process of energy transfer could be directly examined by detailed photoluminescence decay measurement and time resolved photoluminescence analysis. This strategy overcomes the low reverse intersystem crossing efficiency of blue exciplex and complicated device structure of traditional WOLED, enables us to achieve efficient hybrid WOLEDs. Based on this mechanism, we have successfully constructed both exciplex-fluorescence and exciplex-phosphorescence hybrid WOLEDs with remarkable efficiencies.

11.
ACS Appl Mater Interfaces ; 6(15): 11907-14, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24840782

RESUMO

We demonstrate highly efficient exciplex delayed-fluorescence organic light-emitting diodes (OLEDs) in which 4,4',4″-tris[3-methylphenyl(phenyl)aminotriphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were selected as donor and acceptor components, respectively. Our m-MTDATA:Bphen exciplex electroluminescence (EL) mechanism is based on reverse intersystem crossing (RISC) from the triplet to singlet excited states. As a result, an external quantum efficiency (EQE) of 7.79% at 10 mA/cm(2) was observed, which increases by 3.2 and 1.5 times over that reported in Nat. Photonics 2012, 6, 253 and Appl. Phys. Lett. 2012, 101, 023306, respectively. The high EQE would be attributed to a very easy RISC process because the energy difference between the singlet and triplet excited states is almost around zero. The verdict was proven by photoluminescence (PL) rate analysis at different temperatures and time-resolved spectral analysis. Besides, the study of the transient PL process indicates that the presence of an unbalanced charge in exciplex EL devices is responsible for the low EQE and high-efficiency roll-off. When the exciplex devices were placed in a 100 mT magnetic field, the permanently positive magnetoelectroluminescence and magnetoconductivity were observed. The magnetic properties confirm that the efficient exciplex EL only originates from delayed fluorescence via RISC processes but is not related to the triplet-triplet annihilation process.

12.
Nanoscale Res Lett ; 8(1): 529, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24341599

RESUMO

We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW structure WOLEDs based on 1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene as potential barrier layer (PBL) offers high electroluminescent (EL) performance. That is to say, maximum current efficiency and power efficiency are achieved at about 1,000 cd/m2 with 16.4 cd/A and 8.3 lm/W, which increase by 53.3% and 50.9% over traditional three-layer structure WOLEDs, respectively, and a maximum luminance of 17,700 cd/m2 is earned simultaneously. The achievement of high EL performance would be attributed to uniform distribution and better confinement of carriers within the emitting layer (EML). However, when 4,7-diphenyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is used as PBL to form type-II MQW structure, poor EL performance is obtained. We attribute that to improper energy level alignment between the interface of EML/PBL, which leads to incomplete confinement and low recombination efficiency of carriers, a more detailed mechanism was argued.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...