Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(12): e18469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899809

RESUMO

The alterations in DNA methylation and transcriptome in trophoblast cells under conditions of low oxygen and oxidative stress have major implications for pregnancy-related disorders. However, the exact mechanism is still not fully understood. In this study, we established models of hypoxia (H group) and oxidative stress (HR group) using HTR-8/SVneo trophoblast cells and performed combined analysis of genome-wide DNA methylation changes using reduced representation bisulphite sequencing and transcriptome expression changes using RNA sequencing. Our findings revealed that the H group exhibited a higher number of differentially methylated genes and differentially expressed genes than the HR group. In the H group, only 0.90% of all differentially expressed genes displayed simultaneous changes in DNA methylation and transcriptome expression. After the threshold was expanded, this number increased to 6.29% in the HR group. Notably, both the H group and HR group exhibited concurrent alterations in DNA methylation and transcriptome expression within Axon guidance and MAPK signalling pathway. Among the top 25 differentially methylated KEGG pathways in the promoter region, 11 pathways were commonly enriched in H group and HR group, accounting for 44.00%. Among the top 25 KEGG pathways in transcriptome with significant differences between the H group and HR group, 10 pathways were consistent, accounting for 40.00%. By integrating our previous data on DNA methylation from preeclamptic placental tissues, we identified that the ANKRD37 and PFKFB3 genes may contribute to the pathogenesis of preeclampsia through DNA methylation-mediated transcriptome expression under hypoxic conditions.


Assuntos
Hipóxia Celular , Metilação de DNA , Estresse Oxidativo , Transcriptoma , Trofoblastos , Humanos , Trofoblastos/metabolismo , Estresse Oxidativo/genética , Transcriptoma/genética , Hipóxia Celular/genética , Linhagem Celular , Feminino , Gravidez , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
2.
Pharmacogenomics ; 24(6): 335-343, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37092337

RESUMO

Oxcarbazepine (OXC) is one of the preferred drugs for partial seizures and generalized tonic-clonic seizures. However, clinical studies have found that there are considerable differences among different populations in OXC therapeutic efficacy or safety that result from the function changes of metabolic enzymes, transporters and other receptors involved in pharmacokinetics and pharmacodynamics in vivo. The authors collected all the information on the clinically reported associations between variants of common genes (e.g., UGT1A9, HLA-B, ABCB1) and OXC. In conclusion, these associations based on variants are beneficial for adjusting the medication regimen, which could be useful for individualized treatment with OXC.


As a new-generation aromatic antiepileptic drug, oxcarbazepine (OXC) is often used for epilepsy treatment. It is known that when OXC is absorbed, it is reduced to an active metabolite in the liver and enters the brain through the blood circulation to play an antiepileptic role. Therefore, the variations of proteins participating in the process, including drug metabolic enzymes, transporters, drug targets and other receptors, have an effect on the efficacy and safety of OXC in vivo. In this study, the associations of some variants of common genes with OXC are summarized to provide epileptic patients an appropriate dose of OXC or reduce the risk of OXC-induced toxicity, which are in favor of personalized OXC treatment for patients with epilepsy.


Assuntos
Anticonvulsivantes , Epilepsia , Humanos , Oxcarbazepina/uso terapêutico , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Carbamazepina/efeitos adversos , Carbamazepina/farmacocinética , Farmacogenética , Epilepsia/tratamento farmacológico , Epilepsia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...