Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10515-10519, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526518

RESUMO

Förster resonance energy transfer (FRET) holds a significant position in various natural and artificial systems, especially within donor-acceptor systems encompassing chiral components. Despite extensive investigations, a clear understanding of the effects of chirality and FRET on discriminatory fluorescence remains elusive. Here, chiral perovskite nanowires (CPNWs) and achiral rhodamine B (RhB) are employed to examine the FRET and discriminatory fluorescence behavior in a donor-acceptor system involving a chiral nanostructure. A notable FRET from the CPNWs to RhB is observed, along with circular dichroism (CD) and circularly polarized luminescence (CPL) activities in RhB. Although the FRET interaction remains consistent over time, a notable inversion in the polarity preference of the CD and CPL of RhB is observed. This reveals that the discriminatory fluorescence of the acceptor arises from the electromagnetic influence of the chiral donor. These findings elucidate that "chirality", as a property related to spatial orientation, cannot accompany the transfer of energy (which is a scalar) from chiral nanostructures to achiral molecules, which helps advance the understanding of the discriminatory fluorescence in the donor-acceptor system with a chiral nanostructure.

2.
Chemosphere ; 349: 141001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128740

RESUMO

The widespread use of polyethylene (PE) agricultural films has led to a large accumulation of microplastics in soil, and the environmental effects of microplastics on soil-plants have received increasing attention. In the actual soil environment, microplastics undergo significant changes in their physicochemical properties due to aging, accompanied by complex ecological and environmental effects. However, the quantitative understanding of the environmental effects of microplastic aging in soil-plant systems is still unclear. Therefore, this study investigated the effects of aged and unaged PE microplastics on ecological functions and microplastic transfer mechanisms in soil-plant system, and confirmed the transport behavior of micrometer-sized microplastics (26 µm) within maize plants, expanding the upper size limit of existing studies on microplastic transport within plants. The accumulation of microplastics in maize was also quantitatively assessed in combination with the self-established method of Eu marked PE. The mobility ratio of microplastics from soil to roots, roots to stems, and stems to leaves was 1.07%, 0.76%, and 103.28%, respectively. This study provides a scientific understanding for the environmental effects of microplastics in soil-plants systems quantitatively.


Assuntos
Microplásticos , Poluentes do Solo , Solo/química , Plásticos , Polietileno , Poluentes do Solo/análise
3.
J Hazard Mater ; 460: 132302, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647663

RESUMO

In this study, the interaction between primary/secondary PE MPs and soil - microbiome - crop complex system and PE MPs enrichment behavior in crops were studied by using the self-developed quantitative characterization method of Eu-MPs and in situ zymography. The results demonstrated for the first time the enrichment effect of micron-sized PE (> 10 µm) in crops, manifested as roots>leaves>stems. Primary PE MPs significantly increased soil TN, TC, SOM and ß-glu activity and inhibited Phos activity. Age-PE MPs significantly reduced soil TN, TP, ß-glu and Phos activities and also have significant inhibitory effects on plant height, stem diameter, and leaf dry weight of maize. Age-PE MPs significantly affected soil microbial diversity, mainly caused by bacterial genera such as UTCFX1, Sphingomonas, Subgroup-6 and Gemmatimonas. Age-PE MPs also affected some metabolism related to microbial community composition and maize growth, including Glycerolipid, Citrate cycle (TCA cycle), C5-Branched dibasic acid, Arginine and proline, Tyrosine metabolism, pentose phosphate pathway, Valine, leucine and isoleucine biosynthesis. These research results indicated that the PE MPs, which are widely present in farmland soils, can affect crop growth, soil microbial community and metabolic function after aging, thus affecting agroecosystems and terrestrial biodiversity.


Assuntos
Gastrópodes , Microbiota , Animais , Polietileno , Microplásticos , Plásticos , Envelhecimento , Produtos Agrícolas
4.
Appl Microbiol Biotechnol ; 106(21): 7301-7314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198866

RESUMO

Dehydrogenation reaction at C1(2) positions is typical and representative of industrial production of steroid drugs. Anti-inflammatory activity can be doubled when the nucleus of the anti-inflammatory steroid hormone drug introduces double bonds at the C1(2) positions. Arthrobacter simplex is currently the most widely studied and used strain for C1(2) dehydrogenation. Therefore, breeding Arthrobacter simplex with high-efficiency dehydrogenation ability is of great significance. In order to obtain high-efficiency strains, the research proposed a new screening strategy based on image process technique: firstly, a color reaction between 2,4-dinitrophenylhydrazine (DNPH) and 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD) was established to characterize the dehydrogenation ability of the strain; secondly, the color data of strains mutated by atmospheric and room temperature plasma (ARTP) in the "color reaction" were automated and analyzed for dehydrogenation ability prediction using optimized support vector machine model. Result showed that the prediction accuracy reached as high as 96% in verification experiments. After a series of mutagenesis, including breaking the bottleneck of a single mutation in ARTP, the dominant strain ARLU-146 was finally obtained from 5168 strains. Its initial conversion rate was 0.8059 g/L/h, with a conversion of 94.41% at 24 h, compared to the original strain ASP which increased the transformation rate by more than 10%. By further process optimization, a high conversion (94.34% within 20 h) with high substrate (85 g/L cortisone acetate) was achieved. According to literature research, it is the highest conversion at this substrate concentration. KEY POINTS: • A high-throughput screening method was developed by using image processing and machine learning technique. • "Mutation bottleneck" of single ARTP mutagenesis was surpassed by complex mutagenesis. • A high substrate (85 g/L CA) and high transformation rate craft (94.34% within 20 h) were built.


Assuntos
Actinobacteria , Arthrobacter , Cortisona , Ensaios de Triagem em Larga Escala , Arthrobacter/genética , Mutagênese , Cetosteroides
5.
Gene ; 833: 146588, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35598683

RESUMO

Eriocheir sinensis is an important economic species in China, which is easily affected by pH changes. However, the molecular mechanism of the pH stress response in E. sinensis is still unclear. Therefore, this study aimed to examine the molecular response mechanism of E. sinensis based on pH variation surveillance, histopathological evaluation and transcriptomic analyses. Firstly, pH variation surveillance showed that E. sinensis could actively regulate the pH of its environment. Meanwhile, the histopathological evaluation suggested that pH stress seriously damaged the gills, especially at high pH. Finally, transcriptome analysis showed that the expression of genes related to ion transport, immune stress, and energy metabolism significantly changed. Many genes played an important role in the pH response of E. sinensis, such as carbonic anhydrase (CA), mitochondrial proton/calcium exchanger protein (LETM1), recombinant sodium/hydrogen exchanger 3 (SLC9A3/NHE3), heat shock protein 90 alpha family class a member (HSP90A), alkylglycerone phosphate synthase (AGPS), succinate-CoA ligase ADP-forming subunit beta (LSC2), and superoxide dismutase (SOD). Our study revealed the molecular response mechanism of E. sinensis in response to pH stress, thus providing a basis for further research on the molecular mechanism of response to pH stress in aquatic animals.


Assuntos
Braquiúros , Brânquias , Animais , Braquiúros/genética , Metabolismo Energético , Perfilação da Expressão Gênica , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...