Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(2): e2204058, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394152

RESUMO

Despite the fascinating optoelectronic properties of graphene, the power conversion efficiency (PCE) of graphene based solar cells remains to be lifted up. Herein, it is experimentally shown that the graphene/quantum wells/GaAs heterostructure solar cell can reach a PCE of 20.2% and an open-circuit voltage (Voc ) as high as 1.16 V at 90 K. The high efficiency is a result of carrier multiplication (CM) effect of graphene in the graphene/GaAs heterostructure. Especially, the external quantum efficiency (EQE) in the ultraviolet wavelength can be improved up to 72.2% based on the heterostructure constructed by graphene/In0.15 Ga0.85 As/GaAs0.75 P0.25 quantum wells/GaAs. The EQE increases as the light wavelength decreases, which indicates more carriers can be effectively excited by the higher energy photons through CM effect. Owing to these physical characters, the graphene/GaAs heterostructure solar cell will provide a possible way to exceed Shockley-Queisser (S-Q) limit.

2.
Adv Sci (Weinh) ; 9(21): e2200642, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35607294

RESUMO

Dynamic semiconductor diode generators (DDGs) offer a potential portable and miniaturized energy source, with the advantages of high current density, low internal impedance, and independence of the rectification circuit. However, the output voltage of DDGs is generally as low as 0.1-1 V, owing to energy loss during carrier transport and inefficient carrier collection, which requires further optimization and a deeper understanding of semiconductor physical properties. Therefore, this study proposes a vertical graphene/silicon DDG to regulate the performance by realizing hot carrier transport and collection. With instant contact and separation of the graphene and silicon, hot carriers are generated by the rebounding process of built-in electric fields in dynamic graphene/silicon diodes, which can be collected within the ultralong hot electron lifetime of graphene. In particular, monolayer graphene/silicon DDG outputs a high voltage of 6.1 V as result of ultrafast carrier transport between the monolayer graphene and silicon. Furthermore, a high current of 235.6 nA is generated due to the carrier multiplication in graphene. A voltage of 17.5 V is achieved under series connection, indicating the potential to supply electronic systems through integration design. The graphene/silicon DDG has applications as an in situ energy source for harvesting mechanical energy from the environment.

3.
Research (Wash D C) ; 2021: 7505638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623921

RESUMO

There is a rising prospective in harvesting energy from the environment, as in situ energy is required for the distributed sensors in the interconnected information society, among which the water flow energy is the most potential candidate as a clean and abundant mechanical source. However, for microscale and unordered movement of water, achieving a sustainable direct-current generating device with high output to drive the load element is still challenging, which requires for further exploration. Herein, we propose a dynamic PN water junction generator with moving water sandwiched between two semiconductors, which outputs a sustainable direct-current voltage of 0.3 V and a current of 0.64 µA. The mechanism can be attributed to the dynamic polarization process of water as moving dielectric medium in the dynamic PN water junction, under the Fermi level difference of two semiconductors. We further demonstrate an encapsulated portable power-generating device with simple structure and continuous direct-current voltage output of 0.11 V, which exhibits its promising potential application in the field of wearable devices and the IoTs.

4.
RSC Adv ; 11(31): 19106-19112, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478643

RESUMO

With the fast development of the internet of things (IoTs), distributed sensors are frequently used and small and portable power sources are highly demanded. However, current portable power sources such as lithium batteries have low capacity and need to be replaced or recharged frequently. A portable power source which can continuously generate electrical power in situ will be an ideal solution. Herein, we demonstrate a wind driven semiconductor electricity generator based on a dynamic Schottky junction, which can output a continuous direct current with an average value of 4.4 mA (with a maximum value of 8.4 mA) over 740 seconds. Compared with a previous metal/semiconductor generator, the output current is one thousand times higher. Furthermore, this wind driven generator has been used as a turn counter, due to its stable output, and also to drive a graphene ultraviolet photodetector, which shows a responsivity of 35.8 A W-1 under 365 nm ultraviolet light. Our research provides a feasible method to achieve wind power generation and power supply for distributed sensors in the future.

5.
Research (Wash D C) ; 2020: 5714754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607498

RESUMO

Searching for light and miniaturized functional device structures for sustainable energy gathering from the environment is the focus of energy society with the development of the internet of things. The proposal of a dynamic heterojunction-based direct current generator builds up new platforms for developing in situ energy. However, the requirement of different semiconductors in dynamic heterojunction is too complex to wide applications, generating energy loss for crystal structure mismatch. Herein, dynamic homojunction generators are explored, with the same semiconductor and majority carrier type. Systematic experiments reveal that the majority of carrier directional separation originates from the breaking symmetry between carrier distribution, leading to the rebounding effect of carriers by the interfacial electric field. Strikingly, NN Si homojunction with different Fermi levels can also output the electricity with higher current density than PP/PN homojunction, attributing to higher carrier mobility. The current density is as high as 214.0 A/m2, and internal impedance is as low as 3.6 kΩ, matching well with the impedance of electron components. Furthermore, the N-i-N structure is explored, whose output voltage can be further improved to 1.3 V in the case of the N-Si/Al2O3/N-Si structure, attributing to the enhanced interfacial barrier. This approach provides a simple and feasible way of converting low-frequency disordered mechanical motion into electricity.

6.
Adv Sci (Weinh) ; 6(24): 1901925, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871865

RESUMO

The overloaded energy cost has become the main concern of the now fast developing society, which make novel energy devices with high power density of critical importance to the sustainable development of human society. Herein, a dynamic Schottky diode based generator with ultrahigh power density of 1262.0 W m-2 for sliding Fe tip on rough p-type silicon is reported. Intriguingly, the increased surface states after rough treatment lead to an extremely enhanced current density up to 2.7 × 105 A m-2, as the charged surface states can effectively accelerate the carriers through large atomic electric field, while the reflecting directions are regulated by the built-in electric field of the Schottky barrier. This research provides an open avenue for utilizing the surface states in semiconductors in a subversive way, which can co-utilize the atomic electric field and built-in electric field to harvest energy from the mechanical movements, especially for achieving an ultrahigh current density power source.

7.
iScience ; 22: 58-69, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31751825

RESUMO

The static PN junction is the foundation of integrated circuits. Herein, we pioneer a high current density generation by mechanically moving N-type semiconductor over P-type semiconductor, named as the dynamic PN junction. The establishment and destruction of the depletion layer causes the redistribution and rebounding of diffusing carriers by the built-in field, similar to a capacitive charge/discharge process of PN junction capacitance during the movement. Through inserting dielectric layer at the interface of the dynamic PN junction, output voltage can be improved and designed numerically according to the energy level difference between the valence band of semiconductor and conduction band of dielectric layer. Especially, the dynamic MoS2/AlN/Si generator with open-circuit voltage of 5.1 V, short-circuit current density of 112.0 A/m2, power density of 130.0 W/m2, and power-conversion efficiency of 32.5% has been achieved, which can light up light-emitting diode timely and directly. This generator can continuously work for 1 h, demonstrating its great potential applications.

8.
Nanotechnology ; 31(10): 105204, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751950

RESUMO

Photodetectors based on graphene/GaAs heterostructure were fabricated and demonstrated for application in self-powered photodetection. Then, Si quantum dots (QDs) were spin-coated onto the surface of the devices to enhance the built-in field by photo-induced doping, because of the tunable Fermi level (E F) of graphene and shallow junction of the heterojunction. Additionally, Au nanoparticles working as a light trapping structure were used to the enhance quantum efficiency of the Si QDs and the optical absorption of the heterojunction, benefitting from localized surface plasmon resonance. Therefore, a large-area photodetector under self-powered conditions achieved a high performance i.e. responsivity (1.81 × 105 V W-1), detectivity (2.0 × 1012 Jones), fast response speed (<0.04 ms), and on-off ratio (6 × 103). The high voltage responsivity opens a promising pathway to ultra-weak light detection, and facilities the development of novel sensors.

9.
Research (Wash D C) ; 2019: 5832382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31922135

RESUMO

Static heterojunction-based electronic devices have been widely applied because carrier dynamic processes between semiconductors can be designed through band gap engineering. Herein, we demonstrate a tunable direct-current generator based on the dynamic heterojunction, whose mechanism is based on breaking the symmetry of drift and diffusion currents and rebounding hot carrier transport in dynamic heterojunctions. Furthermore, the output voltage can be delicately adjusted and enhanced with the interface energy level engineering of inserting dielectric layers. Under the ultrahigh interface electric field, hot electrons will still transfer across the interface through the tunneling and hopping effect. In particular, the intrinsic anisotropy of black phosphorus arising from the lattice structure produces extraordinary electronic, transport, and mechanical properties exploited in our dynamic heterojunction generator. Herein, the voltage of 6.1 V, current density of 124.0 A/m2, power density of 201.0 W/m2, and energy-conversion efficiency of 31.4% have been achieved based on the dynamic black phosphorus/AlN/Si heterojunction, which can be used to directly and synchronously light up light-emitting diodes. This direct-current generator has the potential to convert ubiquitous mechanical energy into electric energy and is a promising candidate for novel portable and miniaturized power sources in the in situ energy acquisition field.

10.
Adv Mater ; 31(7): e1804398, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30556216

RESUMO

Traditionally, Schottky diodes are used statically in the electronic information industry while dynamic or moving Schottky diode-based applications are rarely explored. Herein, a novel Schottky diode named "moving Schottky diode generator" is designed, which can convert mechanical energy into electrical energy by means of lateral movement between the graphene/metal film and semiconductor. The mechanism is based on the built-in electric field separation of the diffusing carriers in moving Schottky diode. A current-density output up of 40.0 A m-2 is achieved through minimizing the contact distance between metal and semiconductor, which is 100-1000 times higher than former piezoelectric and triboelectric nanogenerators. The power density and power conversion efficiency of the heterostructure-based generator can reach 5.25 W m-2 and 20.8%, which can be further enhanced by Schottky junction interface design. Moreover, the graphene film/semiconductor moving Schottky diode-based generator behaves better flexibility and stability, which does not show obvious degradation after 10 000 times of running, indicating its great potential in the usage of portable energy source. This moving Schottky diode direct-current generator can light up a blue light-emitting diode and a flexible graphene wristband is demonstrated for wearable energy source.

11.
Foodborne Pathog Dis ; 15(8): 481-488, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29741928

RESUMO

We characterized antibiotic resistance profiles, antibiotic resistance-associated genes, and pulsed-field gel electrophoresis (PFGE) patterns of 145 Salmonella enterica serotype Typhimurium isolates from human infections and retail foods that were possibly responsible for salmonellosis outbreaks from 2008 to 2012 in Shanghai, China. Resistance to at least three antibiotics was found in 66.7% of chicken isolates, 76.5% of duck isolates, 77.8% of pork isolates, and 80.5% of human isolates. Seven antibiotic resistance phenotypes were detected in chicken isolates, 16 in pork isolates, 17 in duck isolates, and 50 in human isolates. No significant difference (p > 0.05) was found between Salmonella isolates derived from human salmonellosis and from retail foods in terms of the percent resistance of ampicillin, amoxicillin/clavulanic acid, ceftiofur, ceftriaxone, nalidixic acid, chloramphenicol, gentamicin, kanamycin, streptomycin, tetracycline, sulfisoxazole, and sulfamethoxazole/trimethoprim. PFGE using XbaI and BlnI showed that some Salmonella isolates recovered from human infections and retail foods had same or highly similar genetic profile. Same or similar antibiotic resistance profiles, antibiotic resistance associated genes (i.e., qnrA, qnrB, qnrS, aac(6')-Ib, and oqxAB), gene cassettes (i.e., aadA2, dfrA12-aadA2, and aadA1), and mutations were detected in those isolates that exhibited high genetic similarities. These findings highlighted the frequent presence of Salmonella Typhimurium in retail chicken, pork, duck, and humans.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Contaminação de Alimentos , Salmonella typhimurium/isolamento & purificação , Animais , Tipagem de Bacteriófagos , China/epidemiologia , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Microbiologia de Alimentos , Humanos , Produtos da Carne/microbiologia , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/classificação , Sorotipagem
12.
Tissue Eng Part A ; 19(21-22): 2464-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23919505

RESUMO

Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7-10 of fibronectin module III (heterophilic motif) and extracellular domains 1-2 of cadherin-11 (rFN/Cad-11) (homophilic motif), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo.


Assuntos
Colágeno Tipo II/química , Células-Tronco Mesenquimais/citologia , Animais , Biomimética , Caderinas/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Fibronectinas/química , Imuno-Histoquímica , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
13.
Mod Rheumatol ; 23(6): 1037-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23239231

RESUMO

Cadherin-11 is a classic cadherin adhesion molecule that mediates homophilic cell-to-cell adhesion. Cadherin-11 is involved in the function of embryonic development, tissue morphogenesis, tumor invasion and metastasis, and signal transduction. This review summarizes the function of cadherin-11 in synovial joint formation and rheumatoid arthritis (RA), including its relative function with bone and cartilage development and growth plate, synovial, and tendon formation. The role of cadherin-11 in RA is also discussed, both in fibroblasts inflammation and fibroblast-like synoviocyte (FLSs) migration and invasion. The potential of anti-cadherin-11 therapy for RA is introduced in comparison with the other current RA therapies.


Assuntos
Artrite Reumatoide/metabolismo , Caderinas/metabolismo , Osteoblastos/metabolismo , Membrana Sinovial/metabolismo , Artrite Reumatoide/patologia , Adesão Celular/fisiologia , Condrogênese/fisiologia , Humanos , Osteoblastos/patologia , Osteogênese/fisiologia , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...