Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 441: 129953, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36116313

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has been presumed as an environmental cause of human neurodegenerative disorders, such as Alzheimer's disease. Marine diatoms Thalassiosira minima are demonstrated here to produce BMAA-containing proteins in axenic culture while the isomer diaminobutyric acid was bacterially produced. In the co-culture with Cyanobacterium aponinum, diatom growth was inhibited but the biosynthesis of BMAA-containing proteins was stimulated up to seven times higher than that of the control group by cell-cell interactions. The stimulation effect was not caused by the cyanobacterial filtrate. Nitrogen deprivation also doubled the BMAA content of T. minima cells. Transcriptome analysis of the diatom in mixed culture revealed that pathways involved in T. minima metabolism and cellular functions were mainly influenced, including KEGG pathways valine and leucine/isoleucine degradation, endocytosis, pantothenate and CoA biosynthesis, and SNARE interactions in vesicular transport. Based on the expression changes of genes related to protein biosynthesis, it was hypothesized that ubiquitination and autophagy suppression, and limited COPII vesicles transport accuracy and efficiency were responsible for biosynthesis of BMAA-containing proteins in T. minima. This study represents a first application of transcriptomics to investigate the biological processes associated with BMAA biosynthesis in diatoms.


Assuntos
Diamino Aminoácidos , Diatomáceas , Diamino Aminoácidos/análise , Coenzima A/metabolismo , Toxinas de Cianobactérias , Diatomáceas/genética , Diatomáceas/metabolismo , Humanos , Isoleucina/metabolismo , Leucina/metabolismo , Neurotoxinas/análise , Nitrogênio/metabolismo , Proteínas SNARE/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma , Valina/metabolismo
2.
J Hazard Mater ; 423(Pt A): 127078, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523496

RESUMO

Beibu Gulf is an important shellfish aquaculture area in the northwest of the South China Sea, China. In this study, the toxin profile and spatial-temporal distribution of domoic acid (DA) and 10 lipophilic phycotoxins were systematically analyzed in the bivalve mollusks collected in Beibu Gulf from October 2018 to October 2020. Neurotoxin DA was first detected in the mollusks from the investigative regions with a prevalence of 17.7%, peaking at 401 µg kg-1. Cyclic imines (CIs) including gymnodimine-A (GYM-A, 46.6%) and 13-desmethyl-spirolide-C (SPX1, 15.8%) predominated the lipophilic phycotoxins in shellfish, peaking at 10.1 µg kg-1 and 19.6 µg kg-1, respectively. Gymnodimine-A partially accompanied by SPX1 was detected in all batches of shellfish samples, suggesting that Alexandrium ostenfeldii and Karenia selliformis were possible sources of CIs-group toxins in Beibu Gulf. During the investigative period, relatively higher levels of DA occurred in shellfishes from March to August, while slightly higher contents of CIs in mollusks appeared in October and December. Spatial distribution of the targeted phycotoxins demonstrated that shellfishes tended to accumulate relatively higher contents of toxins in Lianzhou, Qinzhou and Tieshan bays.


Assuntos
Bivalves , Toxinas Marinhas , Animais , China , Iminas , Ácido Caínico/análogos & derivados , Prevalência
3.
J Hazard Mater ; 404(Pt B): 124217, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129020

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) reported in some cyanobacteria and eukaryote microalgae is a cause of concern due to its potential risk of human neurodegenerative diseases. Here, BMAA distribution in phytoplankton, zooplankton, and other marine organisms was investigated in Jiaozhou Bay, China, a diatom-dominated marine ecosystem, during four seasons in 2019. Results showed that BMAA was biomagnified in the food web from phytoplankton to higher trophic levels. Trophic magnification factors (TMFs) for zooplankton, bivalve mollusks, carnivorous crustaceans and carnivorous gastropod mollusks were ca. 4.58, 30.1, 42.5, and 74.4, respectively. Putative identification of ß-amino-N-methylalanine (BAMA), an isomer of BMAA, was frequently detected in phytoplankton samples. A total of 56 diatom strains of the genera Pseudo-nitzschia, Thalassiosira, Chaetoceros, Planktoniella, and Minidiscus isolated from the Chinese coast were cultured in the laboratory, among which 21 strains contained BMAA mainly in precipitated bound form at toxin concentrations ranging from 0.11 to 3.95 µg/g dry weight. Only 2,4-diaminobutyric acid (DAB) but not BMAA or BAMA was detected in seven species of bacteria isolated from the gut of gastropod Neverita didyma, suggesting that this benthic vector of BMAA may have accumulated this compound via trophic transfer.


Assuntos
Diamino Aminoácidos , Diatomáceas , Animais , Bioacumulação , China , Toxinas de Cianobactérias , Diatomáceas/metabolismo , Ecossistema , Cadeia Alimentar , Humanos , Neurotoxinas/análise , Neurotoxinas/toxicidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...