Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 23(1): 528, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880633

RESUMO

BACKGROUND: It is usually difficult for the trough concentration of vancomycin to reach the recommended lower limit of 10 mg/L per the label dose in the paediatric population. Moreover, children with haematologic diseases who suffer from neutropenia are more likely to have lower exposure of vancomycin, and the risk factors have been poorly explored. METHOD: We reviewed and analysed the initial trough concentration of vancomycin and synchronous cytometry and biochemical parameters in the blood of 1453 paediatric patients with haematologic diseases over a 6 year period, from 2017 to 2022. RESULTS: Forty-five percent of the enrolled children had vancomycin trough concentrations below 5 mg/L after receiving a dose of 40 mg/kg/day, and the multiple regression showed that age (OR = 0.881, 95% CI 0.855 to 0.909, P < 0.001), BMI (OR = 0.941, 95% CI 0.904 to 0.980, P = 0.003) and the glomerular filtration rate (OR = 1.006, 95% CI 1.004 to 1.008, P < 0.001) were independent risk factors. A total of 79.7% of the children experienced augmented renal clearance, which was closely correlated to age-associated levels of serum creatinine. The vancomycin trough concentration was higher in children with aplastic anaemia than in those with other haematologic diseases due to a higher BMI and a lower glomerular filtration rate. CONCLUSION: Age-associated augmented renal clearance and low BMI values contributed to suboptimal trough concentrations of vancomycin in children with haematologic diseases, and the effects of long-term use of cyclosporine and glucocorticoids need to be taken into account.


Assuntos
Doenças Hematológicas , Vancomicina , Criança , Humanos , Antibacterianos/sangue , Antibacterianos/uso terapêutico , Índice de Massa Corporal , Doenças Hematológicas/tratamento farmacológico , Vancomicina/sangue , Vancomicina/uso terapêutico
2.
Psychopharmacology (Berl) ; 240(1): 239-248, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36564670

RESUMO

Muscarinic acetylcholine receptors (mAChRs) have been shown to play significant roles in the regulation of normal cognitive processes in the hippocampus, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are also involved in these processes. This study aims to explore the mAChR-mediated regulation of AMPARs GluA2 trafficking and to reveal the key proteins and the signaling cascade involved in this process. Primary hippocampal neurons, as cell models, were treated with agonist 77-LH-28-1 and antagonist VU0255035, Fsc231, and APV. C57BL/6J male mice were stereotactically injected with 77-LH-28-1 and Fsc231 to obtain hippocampal slices. The trafficking of GluA2 was detected by surface biotinylation and immunostaining. Activation of M1 mAChRs promoted endocytosis and decreased the postsynaptic localization of the AMPA receptor subunit GluA2 and that phosphorylation of GluA2 at Ser880 was increased by M1 mAChR activity. Fsc231 blocked the endocytosis and postsynaptic localization of GluA2 induced by 77-LH-28-1 without affecting the phosphorylation of Ser880. PICK1 was required for M1 mAChR-mediated GluA2 endocytosis and downstream of phosphorylation of GluA2-Ser880, and the PICK1-GluA2 interaction was essential for M1 mAChR-mediated postsynaptic expression of GluA2. Taken together, our results show a functional correlation of M1 mAChRs with GluA2 and the role of PICK1 in their interplay. The schematic diagram for the modulation of GluA2 trafficking by M1 mAChRs. Activation of M1 mAChRs induces PKC activation, and the interaction of PICK1-GluA2 determines the endocytosis and postsynaptic localization of GluA2.


Assuntos
Receptor Muscarínico M1 , Receptores de AMPA , Camundongos , Animais , Masculino , Receptores de AMPA/metabolismo , Receptor Muscarínico M1/metabolismo , Camundongos Endogâmicos C57BL , Carbamatos , Hipocampo/metabolismo
3.
Front Pharmacol ; 13: 920022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133820

RESUMO

Cathepsin L (CTSL), a lysosomal acid cysteine protease, is found to play a critical role in chemosencitivity and tumor progression. However, the potential roles and molecular mechanisms of CTSL in chemoresistance in neuroblastoma (NB) are still unclear. In this study, the correlation between clinical characteristics, survival and CTSL expression were assessed in Versteeg dataset. The chemoresistant to cisplatin or doxorubicin was detected using CCK-8 assay. Western blot was employed to detect the expression of CTSL, multi-drug resistance proteins, autophagy-related proteins and apoptosis-related proteins in NB cells while knocking down CTSL. Lysosome staining was analyzed to access the expression levels of lysosomes in NB cells. The expression of apoptosis markers was analyzed with immunofluorescence. Various datasets were analyzed to find the potential protein related to CTSL. In addition, a subcutaneous tumor xenografts model in M-NSG mice was used to assess tumor response to CTSL inhibition in vivo. Based on the validation dataset (Versteeg), we confirmed that CTSL served as a prognostic marker for poor clinical outcome in NB patients. We further found that the expression level of CTSL was higher in SK-N-BE (2) cells than in IMR-32 cells. Knocking down CTSL reversed the chemoresistance in SK-N-BE (2) cells. Furthermore, combination of CTSL inhibition and chemotherapy potently blocked tumor growth in vivo. Mechanistically, CTSL promoted chemoresistance in NB cells by up-regulating multi-drug resistance protein ABCB1 and ABCG2, inhibiting the autophagy level and cell apoptpsis. Furthermore, we observed six datasets and found that Serglycin (SRGN) expression was positively associated with CTSL expresssion. CTSL could mediate chemoresistance by up-regulating SRGN expression in NB cells and SRGN expression was positively correlated with poor prognosis of NB patients. Taken together, our findings indicate that the CTSL promotes chemoresistance to cisplatin and doxorubicin by up-regulating the expression of multi-drug resistance proteins and inhibiting the autophagy level and cell apoptosis in NB cells. Thus, CTSL may be a therapeutic target for overcoming chemoresistant to cisplatin and doxorubicin in NB patients.

4.
Neuroscience ; 465: 85-94, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33895342

RESUMO

Autism spectrum disorder (ASD) is a widespread, complex and serious neurodevelopmental disorder. Complex genetic and environmental factors are thought to contribute to the development of ASD. Genome-wide association analysis has identified multiple autism-related genes. Mutation of the phosphatase and tensin homolog (Pten) is closely related to autism and accounts for 5-17% of cases of autism. However, the detailed mechanism is still unclear. Recently, mitochondrial dysfunction was tightly associated with ASD pathogenesis, such as developmental degeneration, learning and various behavioral disorders. The mitochondrial DNA (mtDNA) copy number in children with autism is also significantly increased. The correlation between Pten and mitochondrial dysfunction in autism is still unknown. In this study, we examined how Pten regulates mitochondrial biogenesis through the AKT/GSK-3ß/PGC-1α signaling pathways. We found that PTEN could dephosphorylate AKT to inhibit its activity, leading to decreased GSK3ß phosphorylation. This decrease in GSK3ß phosphorylation, which could activate itself, increased PGC-1α phosphorylation to promote its degradation and then regulated mitochondrial biogenesis by NRF-1 and TFAM downstream of PGC-1α. In the Valproic acid (VPA) induced autism mouse model, the PTEN protein level was significantly decreased while PGC-1α and COX IV levels were increased in the hippocampus and cortex. Our data suggest that there is a correlation between PTEN and mitochondrial dysfunction and this correlation may be a potential mechanism of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , DNA Mitocondrial , Estudo de Associação Genômica Ampla , Glicogênio Sintase Quinase 3 beta , Humanos , Biogênese de Organelas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
J Ethnopharmacol ; 269: 113691, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33321190

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ilex cornuta Lindl. et Paxt. (Aquifoliaceae family) belongs to the Ilex genus. The leaves of this plant are used for the popular herbal tea "Ku-Ding-Cha" in China due to their health benefits for sore throat, obesity and hypertension. Our previous studies have shown that the extract of Ilex cornuta root exerts cardioprotective effects in rat models of myocardial ischaemic injury, and several new kinds of triterpenoid saponins from Ilex cornuta (TSIC) have protective effects against hydrogen peroxide (H2O2)-induced cardiomyocyte injury. AIM OF THE STUDY: The aim of this study was to clarify the underlying mechanisms by which TSIC protect against H2O2-induced cardiomyocyte injury. MATERIALS AND METHODS: An H2O2-treated H9c2 cardiomyocyte line was used as an in vitro model of oxidation-damaged cardiomyocytes to evaluate the effects of TSIC. Apoptosis was detected with CCK-8 and annexin V assays and via analysis of the levels of apoptosis-associated proteins or genes. The underlying mechanisms related to Akt signalling, Ezh2 expression and activity, and ROS were clarified by Western blotting, quantitative PCR, flow cytometry and rescue experiments. RESULTS: TSIC protected H9c2 cells from H2O2-induced apoptosis. This effect of TSIC was attributable to inhibition of Ezh2 activity, as exhibited by attenuation of H2O2-induced Akt signalling-dependent phosphorylation of Ezh2 at serine 21 (pEzh2S21) upon TSIC pretreatment. In addition, feedback pathway between Akt-dependent Ezh2 phosphorylation and ROS was involved in TSIC-mediated protection of H9c2 cells from apoptosis. CONCLUSIONS: Our findings indicate a pivotal role of the pEzh2S21 network in TSIC-mediated protection against cardiomyocyte apoptosis, potentially providing evidence of the mechanism of TSIC in the treatment and prevention of cardiovascular diseases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peróxido de Hidrogênio/toxicidade , Ilex , Miócitos Cardíacos/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cardiotônicos/isolamento & purificação , Cardiotônicos/farmacologia , Linhagem Celular , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação
6.
Neuropharmacology ; 146: 242-251, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529302

RESUMO

Cognitive flexibility is an important aspect of executive function. The cholinergic system, an important component of cognition, has been shown to modulate cognitive flexibility mainly through the striatum and prefrontal cortex. The role of M1 muscarinic receptors (M1 mAChRs), an important therapeutic target in the cholinergic system, in hippocampus-dependent cognitive flexibility is unclarified. In the present study, we demonstrated that selective activation of M1 mAChRs promoted extinction of initial learned response and facilitated acquisition of reversal learning in the Morris water maze, a behavior test that is mainly dependent on the hippocampus. However, these effects were abolished in GluA2 mutant mice with deficiency in phosphorylation of Ser880 by protein kinase C (PKC). Further long-term depression (LTD) in the hippocampal CA1 area induced by M1 mAChR activation was shown to be dependent on AMPA receptor subunit GluA2 but not GluA1. M1 mAChRs increased GluA2 endocytosis through phosphorylation of Ser880 by PKC. Inhibition of PKC blocked M1 mAChR-mediated LTD, memory switching and reversal learning facilitation. Moreover, the slow memory extinction observed in GluA2 mutant mice and PKC inhibitor-treated mice appeared to affect the consolidation and retrieval of reversal learning. Thus, these results demonstrate that M1 mAChRs mainly facilitate acquisition in spatial reversal learning and further elucidate that such an effect is dependent on the phosphorylation of GluA2 by PKC. The study helps clarify the role of M1 mAChRs in cognitive flexibility and may prompt the earlier prevention of cognitive inflexibility.


Assuntos
Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Receptores de AMPA/metabolismo , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Cognição/fisiologia , Hipocampo , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Piperidinas , Proteína Quinase C/antagonistas & inibidores , Quinolonas , Receptor Muscarínico M1/agonistas , Receptores de AMPA/deficiência
7.
FASEB J ; 32(8): 4247-4257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29509512

RESUMO

M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.


Assuntos
Cognição/fisiologia , Subunidades Proteicas/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores de AMPA/metabolismo , Animais , Pareamento Cromossômico/fisiologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/metabolismo , Fosforilação/fisiologia , Receptores Muscarínicos/metabolismo
8.
Colloids Surf B Biointerfaces ; 132: 281-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26057246

RESUMO

To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control.


Assuntos
Antibacterianos/farmacologia , Cobre/química , Neodímio/química , Zircônio/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X , Zircônio/química
9.
Neurosci Lett ; 566: 231-235, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24607931

RESUMO

Agonist-activated µ-opioid receptor (OPRM1) undergoes robust receptor phosphorylation by G protein-coupled receptor kinases and subsequent ß-arrestin recruitment, triggering receptor internalization and desensitization. Morphine, a widely prescribed opioid, induces receptor phosphorylation inefficiently. Previously we reported that FK506 binding protein 12 (FKBP12) specifically interacts with OPRM1 and such interaction attenuates receptor phosphorylation and facilitates morphine-induced recruitment and activation of protein kinase C. In the current study, we demonstrated that the association of FKBP12 with OPRM1 also affects morphine-induced receptor internalization and G protein-dependent adenylyl cyclase desensitization. Morphine induced faster receptor internalization and adenylyl cyclase desensitization in cells expressing OPRM1 with Pro(353) mutated to Ala (OPRM1P353A), which does not interact with FKBP12, or in the presence of FK506 which dissociates the receptor-FKBP12 interaction. Furthermore, knockdown of cellular FKBP12 level by siRNA accelerated morphine-induced receptor internalization and adenylyl cyclase desensitization. Our study further demonstrated that peptidyl prolyl cis-trans isomerase activity of FKBP12 probably plays a role in inhibition of receptor phosphorylation. In the view that internalized receptor recycles and thus counteracts the development of analgesic tolerance, receptor's association with FKBP12 could also contribute to the development of morphine tolerance through modulation of receptor trafficking.


Assuntos
Morfina/farmacologia , Receptores Opioides mu/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Adenilil Ciclases/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , RNA Interferente Pequeno/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Tacrolimo/farmacologia , Proteína 1A de Ligação a Tacrolimo/genética
10.
Mol Pharmacol ; 85(1): 37-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24113748

RESUMO

Protein kinase C (PKC) activation plays an important role in morphine-induced µ-opioid receptor (OPRM1) desensitization and tolerance development. It was recently shown that receptor phosphorylation by G protein-coupled receptor kinase regulates agonist-dependent selective signaling and that inefficient phosphorylation of OPRM1 leads to PKCε activation and subsequent responses. Here, we demonstrate that such receptor phosphorylation and PKCε activation can be modulated by FK506-binding protein 12 (FKBP12). Using a yeast two-hybrid screen, FKBP12 was identified as specifically interacting with OPRM1 at the Pro(353) residue. In human embryonic kidney 293 cells expressing OPRM1, the association of FKBP12 with OPRM1 decreased the agonist-induced receptor phosphorylation at Ser(375). The morphine-induced PKCε activation and the recruitment of PKCε to the OPRM1 signaling complex were attenuated both by FKBP12 short interfering RNA (siRNA) treatment and in cells expressing OPRM1 with a P353A mutation (OPRM1P353A), which leads to diminished activation of PKC-dependent extracellular signal-regulated kinases. Meanwhile, the overexpression of FKBP12 enabled etorphine to activate PKCε. Further analysis of the receptor complex demonstrated that morphine treatment enhanced the association of FKBP12 and calcineurin with the receptor. The blockade of the FKBP12 association with the receptor by the siRNA-mediated knockdown of endogenous FKBP12 or the mutation of Pro(353) to Ala resulted in a reduction in PKCε and calcineurin recruitment to the receptor signaling complex. The receptor-associated calcineurin modulates OPRM1 phosphorylation, as demonstrated by the ability of the calcineurin autoinhibitory peptide to increase the receptor phosphorylation. Thus, the association of FKBP12 with OPRM1 attenuates the phosphorylation of the receptor and triggers the recruitment and activation of PKCε.


Assuntos
Proteína Quinase C-épsilon/metabolismo , Receptores Opioides mu/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Calcineurina/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Morfina/farmacologia , Mutação , Fosforilação , Transporte Proteico , Ratos , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...