Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(32): 22583-22589, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102645

RESUMO

Circularly polarized (CP) lasers hold tremendous potential for advancing spin information communication and display technologies. Organic materials are emerging candidates for high-performance CP lasers because of their abundant chiral structures and excellent gain characteristics. However, their dissymmetry factor (glum) in CP emission is typically low due to the weak chiral light matter interactions. Here, we presented an effective approach to significantly amplifying glum by leveraging the intrinsic 2D-chiroptical response of an anisotropic organic supramolecular crystal. The organic complex microcrystal was designed to exhibit large 2D-chiroptical activities through strong coupling interactions between their remarkable linear birefringence (LB) and high degree of fluorescence linear polarization. Such 2D-chiroptical response can be further enhanced by the stimulated emission resulted from an increased degree of linear polarization, yielding a nearly pure CP laser with an exceptionally high glum of up to 1.78. Moreover, exploiting the extreme susceptibility of LB to temperature, we demonstrate a prototype of temperature-controlled chiroptical switches. These findings offer valuable insights for harnessing organic crystals to facilitate the development of high-performance CP lasers and other chiroptical devices.

2.
Sci Rep ; 14(1): 15238, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956282

RESUMO

The vector forces at the human-mattress interface are not only crucial for understanding the distribution of vertical and shear forces exerted on the human body during sleep but also serves as a significant input for biomechanical models of sleeping positions, whose accuracy determines the credibility of predicting musculoskeletal system loads. In this study, we introduce a novel method for calculating the interface vector forces. By recording indentations after supine and lateral positions using a vacuum mattress and 3D scanner, we utilize image registration techniques to align body pressure distribution with the mattress deformation scanning images, thereby calculating the vector force values for each unit area (36.25 mm × 36.25 mm). This method was validated through five participants attendance from two perspectives, revealing that (1) the mean summation of the vertical force components is 98.67% ± 7.21% body weight, exhibiting good consistency, and mean ratio of horizontal component force to body weight is 2.18% ± 1.77%. (2) the predicted muscle activity using the vector forces as input to the sleep position model aligns with the measured muscle activity (%MVC), with correlation coefficient over 0.7. The proposed method contributes to the vector force distribution understanding and the analysis of musculoskeletal loads during sleep, providing valuable insights for mattress design and evaluation.


Assuntos
Leitos , Sono , Humanos , Sono/fisiologia , Masculino , Fenômenos Biomecânicos , Adulto , Feminino , Postura/fisiologia , Adulto Jovem , Imageamento Tridimensional/métodos
3.
J Phys Chem Lett ; 15(25): 6467-6475, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869188

RESUMO

Photoexcitation induces intricate changes in both the real and imaginary components of the complex refractive index of thin film materials, which is essential for interpreting transient spectral features. Here, we employ a Kramers-Kronig-based analytical approach to elucidate light-induced changes in the complex refractive index from transient transmission spectra of thin films. Using gold-perovskite films as model systems, we conduct experimental measurements of transient transmission spectra for both individual gold and perovskite films, as well as for the bilayer heterostructure. Our analysis reveals significant changes in the refractive index and absorption for these systems. Notably, we observe negligible photocarrier transfer between the gold and perovskite layers based on transient spectroscopic analysis. These findings have implications for the design and optimization of bilayer heterostructures in optoelectronic applications. This work highlights the importance of spectroscopic techniques in studying the photophysical properties of heterostructure films.

4.
Bioresour Technol ; 400: 130648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561153

RESUMO

Open unsterile fermentation of the low-cost non-food crop, sweet sorghum, is an economically feasible lactic acid biosynthesis process. However, hyperosmotic stress inhibits microbial metabolism and lactic acid biosynthesis, and engineering strains with high osmotic tolerance is challenging. Herein, heavy ion mutagenesis combined with osmotic pressure enrichment was used to engineer a hyperosmotic-tolerant Bacillus coagulans for L-lactic acid production. The engineered strain had higher osmotic pressure tolerance, when compared with the parental strain, primarily owing to its improved properties such as cell viability, cellular antioxidant capacity, and NADH supply. In a pilot-scale open unsterile fermentation using sweet sorghum juice as a feedstock, the engineered strain produced 94 g/L L-lactic acid with a yield of 91 % and productivity of 6.7 g/L/h, and optical purity of L-lactic acid at the end of fermentation was 99.8 %. In short, this study provided effective and low-cost approach to produce polymer-grade L-lactic acid.


Assuntos
Bacillus coagulans , Fermentação , Ácido Láctico , Pressão Osmótica , Sorghum , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Sorghum/metabolismo
5.
Langmuir ; 40(12): 6244-6252, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482812

RESUMO

A dye-sensitized photoanode is prepared by coassembling a Ru complex photosensitizer and a Ru water oxidation catalyst (WOC) on a TiO2 substrate, in which the WOC molecules are immobilized in a layer-by-layer fashion through metal-pyridine coordination with the aid of a bifunctional anchoring and bridging molecule containing multiple pyridine groups. Under visible-light irradiation, an anodic photocurrent of around 200 µA/cm2 has been achieved with O2 and H2 being generated at the photoanode and Pt counter electrode, respectively. The pyridine anchoring strategy provides a simple method to prepare photoelectrodes for applications in photoelectrochemical cells.

6.
Math Biosci Eng ; 21(3): 3519-3539, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38549294

RESUMO

The absence of an effective gripping force feedback mechanism in minimally invasive surgical robot systems impedes physicians' ability to accurately perceive the force between surgical instruments and human tissues during surgery, thereby increasing surgical risks. To address the challenge of integrating force sensors on minimally invasive surgical tools in existing systems, a clamping force prediction method based on mechanical clamp blade motion parameters is proposed. The interrelation between clamping force, displacement, compression speed, and the contact area of the clamp blade indenter was analyzed through compression experiments conducted on isolated pig kidney tissue. Subsequently, a prediction model was developed using a backpropagation (BP) neural network optimized by the Sparrow Search Algorithm (SSA). This model enables real-time prediction of clamping force, facilitating more accurate estimation of forces between instruments and tissues during surgery. The results indicate that the SSA-optimized model outperforms traditional BP networks and genetic algorithm-optimized (GA) BP models in terms of both accuracy and convergence speed. This study not only provides technical support for enhancing surgical safety and efficiency, but also offers a novel research direction for the design of force feedback systems in minimally invasive surgical robots in the future.


Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Animais , Suínos , Desenho de Equipamento , Pressão , Redes Neurais de Computação , Força da Mão
7.
Math Biosci Eng ; 21(1): 1203-1227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303461

RESUMO

The control of robot manipulator pose is significantly complicated by the uncertainties arising from flexible joints, presenting substantial challenges in incorporating practical operational constraints. These challenges are further exacerbated in teleoperation scenarios, where factors such as synchronization and external disturbances further amplify the difficulties. At the core of this research is the introduction of a pioneering teleoperation controller, ingeniously integrating a nonlinear extended state observer (ESO) with the barrier Lyapunov function (BLF) while effectively accommodating a steady time delay. The controller in our study demonstrates exceptional proficiency in accurately estimating uncertainties arising from both flexible joints and external disturbances using the nonlinear ESO. Refined estimates, in conjunction with operational constraints of the system, are integrated into our BLF-based controller. Consequently, a synchronized control mechanism for teleoperation is achieved, exhibiting promising performance. Importantly, our experimental findings provide substantial evidence that our proposed approach effectively reduces the tracking error of the teleoperation system to within 0.02 rad. This advancement highlights the potential of our controller in significantly enhancing the precision and reliability of teleoperated robot manipulators.

8.
Nutr Metab Cardiovasc Dis ; 34(5): 1314-1324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38220507

RESUMO

BACKGROUND AND AIMS: To estimate the number of patients who required a referral to hepatologists following the 2016 EASL-EASD-EASO guideline and a second-line vibration controlled transient elastography (VCTE) examination following the 2021 EASL guideline according to obesity, glycated hemoglobin (HbA1c), blood pressure (BP), and low-density lipoprotein cholesterol (LDL-C) control status in patients with type 2 diabetes mellitus (T2DM). METHODS AND RESULTS: A total of 2515 T2DM patients who were hospitalized were cross-sectionally assessed. When we applied the 2016 EASL-EASD-EASO guideline, 26.8 %-46.4 % (depending on the scores used for diagnosing fibrosis) of T2DM patients needed a referral to hepatologists. When we applied the 2021 EASL guideline, a VCTE examination was required in 10.9 %-35 % (depending on the scores used for diagnosing fibrosis) of T2DM patients. The referral rates and the VCTE requirement were even higher in patients who were obese and/or had poor HbA1c, BP, and/or LDL-C control. CONCLUSIONS: Application of the screening guidelines would lead to a referral to hepatologists or a second-line VCTE examination requirement for a substantial number of T2DM patients, regardless of obesity and metabolic goal attainment status.


Assuntos
Diabetes Mellitus Tipo 2 , Gastroenterologistas , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Hemoglobinas Glicadas , LDL-Colesterol , Obesidade , Fibrose , Encaminhamento e Consulta
10.
Biotechnol J ; 18(12): e2300110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533375

RESUMO

BACKGROUND: Environmental stress resistance is still a bottleneck for economical process for l-lactic acid fermentation. Chronological lifespan (CLS) extension has represented a promising strategy for improving stress resistance of microbial cell factories. MAIN METHODS AND MAJOR RESULTS: In this study, addition of anti-aging drug cysteine, a kind of extending CLS of microbial cell factories, was systematically evaluated on cell viability and l-lactic acid production in Bacillus coagulans CICC 23843. The results revealed that 16 mm l-cysteine supplement significantly improved l-lactic acid titer in B. coagulans. The enhanced total antioxidant capacity (T-AOC) and key enzymes activities involving in glycolytic pathway as well as differentially expressed genes involved in cysteine synthesize and cysteine precursor synthesize pathways, and fatty acid degradation pathway may help to further understand the relative mechanism of l-cysteine effect on improving l-lactic acid accumulation. Finally, based on 16 mm l-cysteine supplement, a final l-lactic acid titer of 130.5 g L-1 with l-lactic acid productivity of 4.07 g L-1  h-1 and the conversion rate of 0.94 g g-1 total sugar was achieved in a 5 L bioreactor. CONCLUSIONS AND IMPLICATIONS: This study provided a valuable option for engineering lactic acid bacteria lifespan for enhancement of lactic acid yield.


Assuntos
Bacillus coagulans , Ácido Láctico , Fermentação , Cisteína/metabolismo , Bacillus coagulans/metabolismo , Reatores Biológicos
12.
Biotechnol Biofuels Bioprod ; 16(1): 78, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170163

RESUMO

Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.

13.
Chem Commun (Camb) ; 59(49): 7631-7634, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37255195

RESUMO

We demonstrate photoisomerization-controlled wavelength-tunable plasmonic lasers by integrating spiropyran derivative-doped PMMA films with two-dimensional Ag nanoparticle arrays. The controllable transformation between spiropyran derivatives and its isomers with different refractive indices by photoexcitation allows for a dynamical and continuous change of the refractive index in the host PMMA film, which is able to tune the lattice plasmon resonance, and hence the lasing wavelength. This result opens up a new avenue for engineering wavelength tunable plasmonic lasers toward practical photonic integration.


Assuntos
Nanopartículas Metálicas , Polimetil Metacrilato , Prata , Lasers
14.
Sci Adv ; 9(11): eadf3567, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921052

RESUMO

Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.

15.
Front Bioeng Biotechnol ; 10: 952498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032718

RESUMO

Allogeneic amnion tissues have been widely used in tissue repair and regeneration, especially a remarkable trend of clinical uses in chronic wound repair. The virus inactivation procedures are necessary and required to be verified for the clinical use and approval of biological products. Cobalt-60 (Co-60) or electron-beam (e-beam) is the common procedure for virus and bacterial reduction, but the excessive dose of irradiation was reported to be harmful to biological products. Herein, we present a riboflavin (RB)-ultraviolet light (UV) method for virus inactivation of amnion and chorion tissues. We used the standard in vitro limiting dilution assay to test the viral reduction capacity of the RB-UV method on amnion or chorion tissues loaded with four types of model viruses. We found RB-UV was a very effective procedure for inactivating viruses of amnion and chorion tissues, which could be used as a complementary method to Co-60 irradiation. In addition, we also screened the washing solutions and drying methods for the retention of growth factors.

16.
Adv Mater ; 34(4): e2106095, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34881466

RESUMO

Exciton-polaritons are half-light, half-matter bosonic quasiparticles formed by strong exciton-photon coupling in semiconductor microcavities. These hybrid particles possess the strong nonlinear interactions of excitons and keep most of the characteristics of the underlying photons. As bosons, above a threshold density they can undergo Bose-Einstein condensation to a polariton condensate phase and exhibit a rich variety of exotic macroscopic quantum phenomena in solids. Recently, organic semiconductors have been considered as a promising material platform for these studies due to their room-temperature stability, good processability, and abundant photophysics and photochemistry. Herein, recent advances of exciton-polaritons and their Bose-Einstein condensates in organic semiconductor microcavities are summarized. First, the basic physics is introduced, and then their emerging applications are highlighted. The remaining questions are also discussed and a personal viewpoint about the potential directions for future research is given.

17.
ACS Appl Mater Interfaces ; 14(1): 1774-1782, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968027

RESUMO

Owing to outstanding optoelectronic properties, halide perovskites are great candidates for novel laser display applications. However, the realization of their practical flat-panel display applications is challenging because of the incapacity to controllably assemble different halide perovskite microlaser arrays onto an identical substrate as pixelated full-color panels due to intrinsic fragile crystal lattices. Here, perovskite red-green-blue (RGB) microdisk arrays are reported, acting as flat-panels for full-color laser displays. A universal screen-overprinting technology is developed to integrate full-color perovskite microdisk arrays on a prepatterned template, which is on the basis of wet-solute-chemical dynamics involving a combination of surface tailoring and solvent selection. Via such an overprinting method, perovskite RGB microlaser matrices with precise localizations and well-defined dimensions were fabricated on an identical substrate, and each set of RGB microlaser served as a pixel for full-color display panels. On this basis, static and dynamic laser displays have been demonstrated with as-prepared full-color panels. These results will provide novel design concepts and device structures for future full-color laser display applications.

18.
Chem Commun (Camb) ; 57(100): 13678-13691, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34870655

RESUMO

In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.

19.
J Am Chem Soc ; 143(48): 20249-20255, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797057

RESUMO

Thermally activated delayed fluorescent (TADF) materials are promising to overcome triplet-induced optical loss in the pursuit of electrically pumped organic lasers. However, population inversion is difficult to establish in these materials due to the severe suppression of triplet-to-singlet upconversion in their condensed states. In this work, we report thermally activated lasing in solution-processed coassembled microcrystals, where TADF dyes were uniformly dispersed into crystalline matrices to ensure an efficient reverse intersystem crossing (RISC). The dark-state triplet excitons harvested by the RISC were effectively converted into radiative singlet excitons, which subsequently participated in the population inversion to boost lasing with an unusual temperature dependence. The lasing wavelength was tuned over the full visible spectrum by doping various TADF laser dyes, owing to the excellent compatibility. Trichromatic TADF microlasers were precisely patterned into periodic pixelated arrays by a template-confined solution-growth method. With as-prepared TADF microlaser arrays as display panels, vivid laser displays were achieved under programmable excitation. These results offer valuable enlightenment to minimize triplet state-related energy losses toward high-performance lasers.

20.
Natl Sci Rev ; 8(2): nwaa162, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691572

RESUMO

Modern high-security cryptography and optical communication call for covert bit sequences with high coding capacity and efficient authentication. Stimuli-responsive lasing emissions with easily distinguishable readout are promising in the coding field as a novel cryptographic primitive, while the application is frequently restricted by the limited number of emission states. Here, we report a strategy of achieving multiple competitive lasing signals in responsive organic microspheres where a donor-acceptor pair was introduced. The competitive lasing from the donor and acceptor was reversibly switched by modulating the competition between the radiative rate of the donor and the rate of energy transfer, and the generated multiple lasing signals enabled a quaternary coding for recognizable cryptographic implementation. Data encryption and extraction were demonstrated using a 4 × 4 microlaser array, showing vast prospects in avoiding the disclosure of security information. The results offer a comprehensive understanding of excited-state dynamics in organic composite materials, which may play a major role in high-security optical recording and information encryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA