Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124286

RESUMO

Adding far-red (FR, 700-800 nm) light to photosynthetic active radiation (400-700 nm) proved to be a possible approach to increasing plant biomass accumulation for lettuce production in indoor vertical farms with artificial lighting as a sole-source lighting. However, how FR light addition influences plant growth, development, and metabolic processes and the optimal value of FR photon flux density for greenhouse-grown lettuce under sunlight are still unclear. This work aims to quantify the value of supplementary FR light with different intensities on lettuce morphological and physiological characteristics in a greenhouse. Lettuce 'Dasusheng' (Lactuca sativa L.) was grown in a greenhouse under seven light treatments, including white plus red LEDs with FR photon flux density at 0, 10, 30, 50, 70, and 90 µmol m-2 s-1 (WR, WR + FR10, WR + FR30, WR + FR50, WR + FR70, and WR + FR90, respectively), and lettuce grown with sunlight only was marked as natural light (NL). FR light addition improved the electron transport flux per cross section and performance index (PIabs, PItotal) and decreased the changes in relative variable fluorescence of lettuce leaves compared to plants under NL. Specifically, the PIabs of lettuce leaves were 41%, 41%, 38%, 33%, 26%, and 25% lower under control than in plants under treatments WR + FR90, WR + FR70, WR + FR50, WR + FR30, WR + FR10, and WR, respectively. Leaf number, leaf area, and biomass accumulation of lettuce followed a quadratic function with increasing FR light intensity and were the highest under treatment WR + FR50. The shoot fresh weight and dry weight of lettuce were increased by 111% and 275%, respectively, under treatment WR + FR50 compared to NL. The contents of vitamin C, reducing sugar, total soluble sugar, and starch in lettuce showed a similar trend with biomass accumulation. In conclusion, with commonly used photosynthetic photon flux density (PPFD, 400-700 nm) around 200 µmol m-2 s-1, supplementary FR light intensity of 30~50 µmol m-2 s-1 was suggested to enhance the photochemistry efficiency, biomass accumulation, and carbohydrates' contents in greenhouse-grown lettuce.

2.
Plants (Basel) ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765398

RESUMO

Light is a crucial environmental signal and a form of photosynthetic energy for plant growth, development, and nutrient formation. To explore the effects of light quality on the growth and nutritional qualities of greenhouse-grown lettuce (Lactuca sativa L.), lettuce was cultivated under supplementary white (W) light-emitting diodes (LEDs); white plus ultraviolet A LEDs (W+UV); white plus far-red LEDs (W+FR); and the combination of white, far-red, and UV-A LEDs (W+FR+UV) for 25 days, with lettuce grown under natural sunlight used as the control. The results indicate that the leaf length and leaf width values for lettuce grown under the W+FR+UV treatment were significantly higher than those of lettuce grown under other supplementary light treatments. The highest values of shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight were recorded under the W+FR treatment (4.0, 6.0, 8.0, and 12.4 times higher than those under the control treatment, respectively). Lettuce grown under the W+FR treatment exhibited the highest total chlorophyll content (39.1%, 24.6%, and 16.2% higher than that under the W, W+UV, and W+FR+UV treatments, respectively). The carotenoid content of lettuce grown under the W+FR treatment was the highest among all treatments. However, the root activity of greenhouse-grown lettuce was the highest under the W+FR+UV treatment. Soluble sugar content, cellulose content, and starch content in the lettuce responded differently to the light treatments and were highest under the W+UV treatment. In summary, supplementary light promoted growth and nutrient accumulation in lettuce. Specifically, white plus far-red light promoted lettuce growth, and white plus UV increased some specific compounds in greenhouse-grown lettuce. Our findings provide valuable references for the application of light-supplementation strategies to greenhouse lettuce production.

3.
Sci Rep ; 13(1): 7274, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142711

RESUMO

Drought severely affects the growth and yield of soybean plants especially during the flowering period. To investigate the effect of 2-oxoglutarate (2OG) in combination with foliar nitrogen (N) at flowering stage on drought resistance and seed yield of soybean under drought stress. This experiment was conducted in 2021 and 2022 on drought-resistant variety (Hefeng 50) and drought-sensitive variety (Hefeng 43) soybean plants treated with foliar N (DS + N) and 2-oxoglutarate (DS + 2OG) at flowering stage under drought stress. The results showed that drought stress at flowering stage significantly increased leaf malonaldehyde (MDA) content and reduced soybean yield per plant. However, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were significantly increased by foliar N treatment, and 2-oxoglutarate synergistically with foliar N treatment (DS + N + 2OG) was more beneficial to plant photosynthesis. 2-oxoglutarate significantly enhanced plant N content, glutamine synthetase (GS) and glutamate synthase (GOGAT) activity. Furthermore, 2-oxoglutarate increased the accumulation of proline and soluble sugars under drought stress. Under drought stress, soybean seed yield was increased by DS + N + 2OG treatment by 16.48-17.10% and 14.96-18.84% in 2021 and 2022, respectively. Thus, the combination of foliar N and 2-oxoglutarate better mitigated the adverse effects of drought stress and could better compensate for the yield loss of soybean under drought stress.


Assuntos
Glycine max , Nitrogênio , Glycine max/metabolismo , Nitrogênio/farmacologia , Ácidos Cetoglutáricos/farmacologia , Resistência à Seca , Fotossíntese , Antioxidantes/metabolismo , Secas
4.
J Plant Physiol ; 254: 153274, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32961477

RESUMO

Vine cuttings with six to eight unfolded leaves are utilized as is conventional in sweetpotato (Ipomoea batatas (L.) Lam.) seedling production. However, most vine cuttings wilt after transplanting into the field. Moreover, few researchers have examined the influence of photon flux density (PFD) provided by white or white plus red light-emitting diodes (LEDs) on sweetpotato plantlets. In this study, hydroponic sweetpotato (cv. Beniharuka) seedlings using single-node cutting were grown under 20 combinations of five levels of PFDs of 150, 200, 250, 300, and 350 µmol m-2 d-1 and four light qualities: white LEDs with a red light to blue light ratio (R:B ratio) of 0.9, white plus red LEDs with R:B ratios of 1.2 and 2.2, respectively, and fluorescent lamp with an R:B ratio of 1.8 as control, for 20 days under a controlled enviroment. Results showed that the number of newly developed leaves on hydroponic sweetpotato seedlings increased with time in a quadratic function, regardless of light quality. Fluorescent lamps led to greater numbers of new leaves on hydroponic sweetpotato seedlings compared with those grown under LEDs. Plant height, leaf area, and fresh and dry weights increased initially and then decreased with increasing daily light integral (DLI) in quadratic funcitons with a highest value under a PFD of 250 µmol m-2 d-1. However, no significant differences were observed in fresh and dry weights of hydroponic sweetpotato seedlings grown under PFDs of 200 and 250 µmol m-2 s-1. The quantum yield of photosystem II (ФPSII) decreased linearly as DLI increased from 8.6-20.2 mol m-2 d-1. Power consumptions based on fresh and dry weights were lowest in sweetpotato seedlings grown under a PFD of 200 µmol m-2 s-1 provided by white LEDs with an R:B ratio of 0.9. White LEDs also showed higher light energy use efficiency than white plus red LEDs. In summary, it is recommended that a PFD of 200 µmol m-2 s-1 with DLI at 11.5 mol m-2 d-1 provided by white LEDs with an R:B ratio of 0.9 is suitable for hydroponic sweetpotato (cv. Beniharuka) seedling production under a controlled environment.


Assuntos
Ipomoea batatas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Metabolismo Energético/efeitos da radiação , Hidroponia , Ipomoea batatas/metabolismo , Ipomoea batatas/efeitos da radiação , Luz , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...