Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108537, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213626

RESUMO

The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.

2.
Methods Enzymol ; 672: 339-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934483

RESUMO

Break-Induced Replication (BIR) is a homologous recombination (HR) pathway that differentiates itself from all other HR pathways by involving extensive DNA synthesis of up to hundreds of kilobases. This DNA synthesis occurs in G2/M arrested cells by a mechanism distinct from regular DNA replication. BIR initiates by strand invasion of a single end of a DNA double-strand break (DSB) followed by extensive D-loop migration. The main replicative helicase Mcm2-7 is dispensable for BIR, however, Pif1 helicase and its PCNA interaction domain are required. Pif1 helicase was shown to be important for extensive repair-specific DNA synthesis at DSB in budding and fission yeasts, flies, and human cells, implicating conservation of the mechanism. Additionally, Mph1 helicase negatively regulates BIR by unwinding migrating D-loops, and Srs2 promotes BIR by eliminating the toxic joint molecules. Here, we describe the methods that address the following questions in studying BIR: (i) how to distinguish enzymes needed specifically for BIR from enzymes needed for other HR mechanisms that require short patch DNA synthesis, (ii) what are the phenotypes expected for mutants deficient in extensive synthesis during BIR, (iii) how to follow extensive DNA synthesis during BIR? Methods are described using yeast model organism and wild-type cells are compared side-by-side with Pif1 deficient cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Front Microbiol ; 12: 772839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819927

RESUMO

Deoxythymidine diphospho-l-rhamnose (dTDP-l-rhamnose) is used by prokaryotic rhamnosyltransferases as the glycosyl donor for the synthesis of rhamnose-containing polysaccharides and compounds that have potential in pharmaceutical development, so its efficient synthesis has attracted much attention. In this study, we successfully cloned four putative dTDP-l-rhamnose synthesis genes Ss-rmlABCD from Saccharothrix syringae CGMCC 4.1716 and expressed them in Escherichia coli. The recombinant enzymes, Ss-RmlA (glucose-1-phosphate thymidylyltransferase), Ss-RmlB (dTDP-d-glucose 4,6-dehydratase), Ss-RmlC (dTDP-4-keto-6-deoxy-glucose 3,5-epimerase), and Ss-RmlD (dTDP-4-keto-rhamnose reductase), were confirmed to catalyze the sequential formation of dTDP-l-rhamnose from deoxythymidine triphosphate (dTTP) and glucose-1-phosphate (Glc-1-P). Ss-RmlA showed maximal enzyme activity at 37°C and pH 9.0 with 2.5mMMg2+, and the K m and k cat values for dTTP and Glc-1-P were 49.56µM and 5.39s-1, and 117.30µM and 3.46s-1, respectively. Ss-RmlA was promiscuous in the substrate choice and it could use three nucleoside triphosphates (dTTP, dUTP, and UTP) and three sugar-1-Ps (Glc-1-P, GlcNH2-1-P, and GlcN3-1-P) to form nine sugar nucleotides (dTDP-GlcNH2, dTDP-GlcN3, UDP-Glc, UDP-GlcNH2, UDP-GlcN3, dUDP-Glc, dUDP-GlcNH2, and dUDP-GlcN3). Ss-RmlB showed maximal enzyme activity at 50°C and pH 7.5 with 0.02mM NAD+, and the K m and k cat values for dTDP-glucose were 98.60µM and 11.2s-1, respectively. A one-pot four-enzyme reaction system was developed by simultaneously mixing all of the substrates, reagents, and four enzymes Ss-RmlABCD in one pot for the synthesis of dTDP-l-rhamnose and dUDP-l-rhamnose with the maximal yield of 65% and 46%, respectively, under the optimal conditions. dUDP-l-rhamnose was a novel nucleotide-activated rhamnose reported for the first time.

4.
Front Microbiol ; 12: 744914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712213

RESUMO

As a natural sweetening and solubilizing agent, rubusoside has great potential in the application of healthy beverages and pharmaceuticals. However, the direct extraction and purification of rubusoside from raw materials is inefficient. In this work, a novel ß-glucosidase (CsBGL) was obtained from Chryseobacterium scophthalmum 1433 through screening of the environmental microorganisms. CsBGL markedly hydrolyzed sophorese (Glcß1-2Glc) and laminaribiose (Glcß1-3Glc), but for steviol glycosides, it only hydrolyzed the C-13/C-19-linked sophorese, instead of the C-13/C-19-linked Glcß1-2[Glcß1-3]Glc trisaccharide and Glcß1-monosaccharide. It efficiently hydrolyzed stevioside (240 g/L) to produce rubusoside (99% yield) at 47.5°C for 70 min. Even when using a crude steviol glycosides extract (500 g/L) containing ∼226 g/L stevioside as the substrate, CsBGL could also convert stevioside to rubusoside (99% yield) at 47.5°C for 2 h, in which the rubusoside concentration increased from the initial 42 g/L to the final 222 g/L. These results reveal that CsBGL would be a promising biocatalyst for the industry-scale production of rubusoside from stevioside or/and the crude steviol glycosides extract.

5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140406

RESUMO

Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Conversão Gênica , Deleção de Genes , Duplicação Gênica , Humanos , Modelos Biológicos , Ligação Proteica , Rad51 Recombinase/metabolismo
6.
Phys Chem Chem Phys ; 23(17): 10395-10401, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33889887

RESUMO

Proton transfer from Brønsted acid sites (BASs) to alcohol molecules ignites the acid-catalyzed alcohol dehydration reactions. For aqueous phase dehydration reactions in zeolites, the coexisting water molecules around BASs in the zeolite pores significantly affect the alcohol dehydration activity. In the present work, proton transfer processes among the BASs of H-BEA zeolites, the adsorbed cyclohexanol and surrounding water clusters with different sizes up to 8 water molecules were investigated using ab initio molecular dynamics (AIMD) simulations combined with the multiple-walker well-tempered metadynamics algorithm. The plausible proton locations and proton transfer processes were characterized using two/three-dimensional free energy landscapes. The strong proton affinity makes the protonated cyclohexanol stable species until a water trimer is formed. The proton either is shared between protonated cyclohexanol and the water trimer or remains with the water trimer (H7O3+). With a further increase in water concentrations, the proton prefers to remain with the water clusters.

7.
EMBO J ; 40(10): e104847, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33844333

RESUMO

DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.


Assuntos
Reparo do DNA/fisiologia , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Humanos
8.
Nature ; 590(7847): 655-659, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33473214

RESUMO

Break-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases1,2. Previous studies have defined the enzymes that are required for BIR1-5; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication. Without primase, leading strand synthesis is initiated efficiently, but is unable to proceed beyond 30 kilobases, suggesting that primase is needed for stabilization of the nascent leading strand. DNA synthesis can initiate in the absence of Pif1 or Pol32, but does not proceed efficiently. Interstitial telomeric DNA disrupts and terminates BIR progression, and BIR initiation is suppressed by transcription proportionally to the transcription level. Collisions between BIR and transcription lead to mutagenesis and chromosome rearrangements at levels that exceed instabilities induced by transcription during normal replication. Together, these results provide fundamental insights into the mechanism of BIR and how BIR contributes to genome instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Saccharomyces cerevisiae , Cromossomos Fúngicos/genética , DNA Helicases/deficiência , DNA Primase/metabolismo , DNA Fúngico/biossíntese , DNA Polimerase Dirigida por DNA/deficiência , Instabilidade Genômica , Cinética , Mutagênese , Mutação , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Telômero/genética , Fatores de Tempo , Transcrição Gênica
9.
Methods Mol Biol ; 2153: 47-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840771

RESUMO

DNA double-strand break (DSB) end resection is an essential step for homologous recombination. It generates 3' single-stranded DNA needed for the loading of the strand exchange proteins and DNA damage checkpoint proteins. To study the mechanism of end resection in fission yeast, we apply a robust, quantitative and inducible assay. Resection is followed at a single per genome DSB synchronously generated by the tet-inducible I-PpoI endonuclease. An additional assay to follow resection involves recombination between two direct repeats by single-strand annealing (SSA), since SSA requires extensive resection to expose two single-strand repeats for annealing. The kinetics of resection and SSA repair are then measured using Southern blots.


Assuntos
DNA de Cadeia Simples/metabolismo , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Southern Blotting , Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Endodesoxirribonucleases/metabolismo
10.
Front Pharmacol ; 11: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116724

RESUMO

Hyperuricemia is characterized by abnormally high level of circulating uric acid in the blood and is associated with increased risk of kidney injury. The pathophysiological mechanisms leading to hyperuricemic nephropathy (HN) involve oxidative stress, endothelial dysfunction, inflammation, and fibrosis. Mangiferin is a bioactive C-glucoside xanthone, which has been exerting anti-inflammatory, anti-fibrotic, and antioxidative effects in many diseases. This study aimed to evaluate the effect of mangiferin treatment in HN. In a mouse model of HN, we observed lower circulating urate levels and ameliorated renal dysfunction with mangiferin treatment, which was associated with reduced renal inflammation and fibrosis. We next investigated the mechanism of urate lowering effect of mangiferin. Metabolic cage experiment showed that mangiferin-administrated mice excreted significantly more urinary uric acid due to elevated urine output, but no marked change in urine uric acid concentration. Expressions of water channels and urate transporters were further assessed by western blot. Renal AQP2 expression was decreased, yet urate transporters URAT1, GLUT9, and OAT1 expressions were not affected by mangiferin in HN mice. Moreover, mangiferin treatment also normalized xanthine oxidase and SOD activity in HN mice, which would decrease uric acid synthesis and improve oxidative stress, respectively. Therefore, our results reveal a novel mechanism whereby mangiferin can reduce serum uric acid levels by promoting AQP2-related urinary uric acid excretion. This study suggested that mangiferin could be a multi-target therapeutic candidate to prevent HN via mechanisms that involve increased excretion and decreased production of uric acid and modulation of inflammatory, fibrotic, and oxidative pathways.

11.
Ann Clin Lab Sci ; 49(6): 756-762, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31882426

RESUMO

Hyperuricemia (HUA) is positively correlated with the progression of cardiovascular and metabolic diseases. Anti-HUA drugs aim to either reduce uric acid production or promote uric acid excretion. Urate transporter 1 (URAT1) is a major urate transporter involved in renal uric acid reabsorption and excretion, making it an important anti-HUA drug target. To better understand the characteristics of URAT1 under pathological conditions, the present study aims to investigate URAT1 modulation in HUA mouse and cell line models. We found that URAT1 expression increased in the kidneys of HUA mice with normal renal function, but decreased in HUA mice with kidney injury (KI-HUA). In KI-HUA mice, treatment with anti-HUA agents, febuxostat, and benzbromarone decreased uric acid levels. However, febuxostat treatment also decreased URAT1 expression, whereas benzbromarone treatment increased its expression. Based on these in vivo findings, we propose that extracellular uric acid levels in the proximal tubule epithelial cells positively regulated URAT1 expression. In high uric acid cell models, URAT1 expression increased within 2 h of uric acid stimulation in a dose-dependent manner that supported our hypothesis. Therefore, our results suggest that URAT1 expression is positively regulated by the distinct extracellular uric acid levels in different HUA models.


Assuntos
Hiperuricemia/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Benzobromarona/farmacologia , Modelos Animais de Doenças , Febuxostat/farmacologia , Células HEK293 , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos ICR , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ácido Úrico/sangue , Ácido Úrico/farmacologia
12.
Mol Cell ; 76(5): 699-711.e6, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31542296

RESUMO

Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from ∼3-5 kb/h up to ∼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Cinética , Mutação , Domínios Proteicos , Transporte Proteico , Proteína Rad52 de Recombinação e Reparo de DNA/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
13.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30652105

RESUMO

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

14.
Nature ; 564(7735): 287-290, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518856

RESUMO

Insertions of mobile elements1-4, mitochondrial DNA5 and fragments of nuclear chromosomes6 at DNA double-strand breaks (DSBs) threaten genome integrity and are common in cancer7-9. Insertions of chromosome fragments at V(D)J recombination loci can stimulate antibody diversification10. The origin of insertions of chromosomal fragments and the mechanisms that prevent such insertions remain unknown. Here we reveal a yeast mutant, lacking evolutionarily conserved Dna2 nuclease, that shows frequent insertions of sequences between approximately 0.1 and 1.5 kb in length into DSBs, with many insertions involving multiple joined DNA fragments. Sequencing of around 500 DNA inserts reveals that they originate from Ty retrotransposons (8%), ribosomal DNA (rDNA) (15%) and from throughout the genome, with preference for fragile regions such as origins of replication, R-loops, centromeres, telomeres or replication fork barriers. Inserted fragments are not lost from their original loci and therefore represent duplications. These duplications depend on nonhomologous end-joining (NHEJ) and Pol4. We propose a model in which alternative processing of DNA structures arising in Dna2-deficient cells can result in the release of DNA fragments and their capture at DSBs. Similar DNA insertions at DSBs are expected to occur in any cells with linear extrachromosomal DNA fragments.


Assuntos
Quebra Cromossômica , Duplicação Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/deficiência , Mutagênese Insercional/genética , Saccharomyces cerevisiae/genética , Centrômero/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Origem de Replicação/genética , Retroelementos/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética
15.
Nat Commun ; 6: 6233, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25670504

RESUMO

Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Animais , Antígenos Nucleares/metabolismo , Linhagem Celular , Galinhas , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Células HEK293 , Humanos , Autoantígeno Ku , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
16.
Mol Cell Endocrinol ; 384(1-2): 83-95, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24418361

RESUMO

Somatostatin receptors (SSTRs) are proposed to mediate the actions of somatostatin (SST) and its related peptide, cortistatin (CST), in vertebrates. However, the identity, functionality, and tissue expression of these receptors remain largely unknown in most non-mammalian vertebrates including birds. In this study, five SSTRs (named cSSTR1, cSSTR2, cSSTR3, cSSTR4, cSSTR5) were cloned from chicken brain by RT-PCR. Using a pGL3-CRE-luciferase reporter system, we demonstrated that activation of each cSSTR expressed in CHO cells by cSST28, cSST14 and cCST14 treatment could inhibit forskolin-induced luciferase activity of CHO cells, indicating the functional coupling of all cSSTRs to Gi protein(s). Interestingly, cSSTR1-4 expressed in CHO cells could be activated by cSST28, cSST14 and cCST14 with high potencies, suggesting that they may function as the receptors common for these peptides. In contrast, cSSTR5 could be potently activated by cSST28 only, indicating that it is a cSST28-specific receptor. Using RT-PCR, wide expression of cSSTRs was detected in chicken tissues including pituitary. In accordance with their expression in pituitary, cSST28, cSST14, and cCST14 were demonstrated to inhibit basal and novel cGHRH1-27NH2-induced GH secretion in cultured chicken pituitary cells dose-dependently (0-10nM) by Western blot analysis, suggesting the involvement of cSSTR(s) common for these peptides in mediating their inhibitory actions. Collectively, our study establishes a molecular basis to elucidate the roles of SST/CST in birds and provide insights into the roles of SST/CST in vertebrates, such as their conserved actions on pituitary.


Assuntos
Galinhas/genética , Hormônio do Crescimento/metabolismo , Neuropeptídeos/genética , Receptores de Somatostatina/genética , Somatostatina/genética , Somatotrofos/metabolismo , Animais , Células CHO , Células Cultivadas , Galinhas/metabolismo , Cricetulus , Regulação da Expressão Gênica , Genes Reporter , Hormônio do Crescimento/antagonistas & inibidores , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Luciferases/genética , Luciferases/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/farmacologia , Somatotrofos/citologia , Somatotrofos/efeitos dos fármacos , Transfecção
17.
Dev Comp Immunol ; 42(2): 138-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24001581

RESUMO

IgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii). Phylogenetic analysis indicated that it is orthologous to mammalian IgD and closely related to the IgD of other fish. The lengths of sturgeon membrane-bound IgD transcripts ranged from 1.2kb to 6.2kb, encoding 3-19 CH domains. As in teleosts, the first CH domain of the sturgeon IgD transcript is also derived from µCH1 by RNA splicing. However, the variable region of the expressed sturgeon IgD shows limited V(D)J usage. In addition to IgD, three IgM variants were also identified in this species, whereas no IgT/Z-encoding genes were observed. This study bridges the gap in Ig evolution between elasmobranchs and teleosts and provides significant insight into the early evolution of immunoglobulins.


Assuntos
Evolução Biológica , Elasmobrânquios/genética , Imunoglobulina D/genética , Imunoglobulina M/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Elasmobrânquios/imunologia , Proteínas de Peixes , Perfilação da Expressão Gênica , Variação Genética , Imunoglobulina D/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/imunologia , Imunoglobulinas/deficiência , Imunoglobulinas/genética , Filogenia , Splicing de RNA , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...