Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080339

RESUMO

BACKGROUND: Toxoplasma gondii, an intracellular protozoan parasite, exists in the host brain as cysts, which can result in Toxoplasmic Encephalitis (TE) and neurological diseases. However, few studies have been conducted on TE, particularly on how to prevent it. Previous proteomics studies have showed that the expression of C3 in rat brains was up-regulated after T. gondii infection. METHODS: In this study, we used T. gondii to infect mice and bEnd 3 cells to confirm the relation between T. gondii and the expression of C3. BEnd3 cells membrane proteins which directly interacted with C3a were screened by pull down. Finally, animal behavior experiments were conducted to compare the differences in the inhibitory ability of TE by four chemotherapeutic compounds (SB290157, CVF, NSC23766, and Anxa1). RESULTS: All chemotherapeutic compounds in this study can inhibit TE and cognitive behavior in the host. However, Anxa 1 is the most suitable material to inhibit mice TE. CONCLUSION: T. gondii infection promotes TE by promoting host C3 production. Anxa1 was selected as the most appropriate material to prevent TE among four chemotherapeutic compounds closely related to C3.


Assuntos
Toxoplasma , Toxoplasmose Cerebral , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Camundongos , Proteômica , Toxoplasmose Cerebral/tratamento farmacológico , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/parasitologia
2.
Parasit Vectors ; 15(1): 263, 2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35871661

RESUMO

BACKGROUND: The aim of this study was to gain an understanding of the transcriptomic changes that occur in a wild species when infected with Toxoplasma gondii. The masked palm civet, an artifically domesticated animal, was used as the model of a wild species. Transcriptome analysis was used to study alterations in gene expression in the domesticated masked palm civet after chronic infection with T. gondii. METHODS: Masked palm civets were infected with 105 T. gondii cysts and their brain tissue collected after 4 months of infection. RNA sequencing (RNA-Seq) was used to gain insight into the spectrum of genes that were differentially expressed due to infection. Quantitative reverse-transcription PCR (qRT-PCR) was also used to validate the level of expression of a set of differentially expressed genes (DEGs) obtained by sequencing. RESULTS: DEGs were screened from the sequencing results and analyzed. A total of 2808 DEGs were detected, of which 860 were upregulated and 1948 were downregulated. RNA-Seq results were confirmed by qRT-PCR. DEGs were mainly enriched in cellular process and metabolic process based on gene ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that transcriptional changes in the brain of infected masked palm civets evolved over the course of infection and that DEGs were mainly enriched in the signal transduction, immune system processes, transport and catabolic pathways. Finally, 10 essential driving genes were identified from the immune signaling pathway. CONCLUSIONS: This study revealed novel host genes which may provide target genes for the development of new therapeutics and detection methods for T. gondii infection in wild animals.


Assuntos
Toxoplasma , Toxoplasmose Animal , Animais , Encéfalo , Perfilação da Expressão Gênica/métodos , Infecção Persistente , Toxoplasma/genética , Transcriptoma , Viverridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...