Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.338
Filtrar
1.
Front Oncol ; 14: 1431318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939338

RESUMO

Background: Malignant pleural effusion (MPE) is prevalent among cancer patients, indicating pleural metastasis and predicting poor prognosis. However, accurately identifying MPE in clinical settings is challenging. The aim of this study was to establish an innovative nomogram-derived model based on clinical indicators and serum metal ion levels to identify MPE. Methods: From July 2020 to May 2022, 428 patients diagnosed with pleural effusion (PE) were consecutively recruited. Comprehensive demographic details, clinical symptoms, imaging data, pathological information, and laboratory results, including serum metal ion levels, were systematically collected. The nomogram was created by incorporating the most significant predictors identified through LASSO and multivariate logistic regression analysis. The predictors were assigned weighted points based on their respective regression coefficients, allowing for the calculation of a total score that corresponds to the probability of MPE. Internal validation using bootstrapping techniques assessed the nomogram's performance, including calibration, discrimination, and clinical applicability. Results: Seven key variables were identified using LASSO regression and multiple regression analysis, including dyspnea, fever, X-ray/CT compatible with malignancy, pleural carcinoembryonic antigen(pCEA), serum neuron-specific enolase(sNSE), serum carcinoembryonic antigen(sCEA), and pleural lactate dehydrogenase(pLDH). Internal validation underscored the superior performance of our model (AUC=0.940). Decision curve analysis (DCA) analysis demonstrated substantial net benefit across a probability threshold range > 1%. Additionally, serum calcium and copper levels were significantly higher, while serum zinc levels were significantly lower in MPE patients compared to benign pleural effusion (BPE) patients. Conclusion: This study effectively developed a user-friendly and reliable MPE identification model incorporating seven markers, aiding in the classification of PE subtypes in clinical settings. Furthermore, our study highlights the clinical value of serum metal ions in distinguishing malignant pleural effusion from BPE. This significant advancement provides essential tools for physicians to accurately diagnose and treat patients with MPE.

2.
PLoS One ; 19(6): e0305119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935663

RESUMO

OBJECTIVE: This study evaluated the effect of the systemic immune-inflammation index/albumin ratio (SII/ALB) on the prognosis of immunotherapy-treated patients receiving opioids. METHODS: A retrospective analysis was conducted of 185 immunotherapy-treated patients who received opioids at Xuzhou Central Hospital from 01/09/2021 to 01/09/2023. The results of related clinical data were collected during the week before the cancer patients received immunotherapy. The SII/ALB cut-off value was determined, and the relationship between the SII/ALB and clinical pathological parameters was analyzed using the chi-square test. The effect of the SII/ALB on progression-free survival (PFS) was examined using Kaplan-Meier curves and the Cox proportional hazard model. RESULT: The SII/ALB cut-off value was 20.86, and patients were divided into low (SII/ALB ≤ 20.86) and high (SII/ALB > 20.86) SII/ALB groups. Adverse reactions (hazard ratio [HR] = 0.108; 95% confidence interval [CI]: 0.061-0.192, P < 0.001) and the SII/ALB (HR = 0.093; 95% CI: 0.057-0.151, P < 0.001) were independent prognostic factors for PFS. Compared with the high SII/ALB group, the low SII/ALB group had longer PFS after opioid treatment (12.2 vs. 5.2 months, P < 0.001). CONCLUSION: The SII/ALB is a potentially important prognostic parameter in immunotherapy-treated patients receiving opioids.


Assuntos
Analgésicos Opioides , Imunoterapia , Inflamação , Neoplasias , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Analgésicos Opioides/uso terapêutico , Idoso , Inflamação/sangue , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Adulto , Estimativa de Kaplan-Meier , Albumina Sérica/análise , Modelos de Riscos Proporcionais , Idoso de 80 Anos ou mais
3.
Cell Death Discov ; 10(1): 283, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871699

RESUMO

CD8+ T-cell exhaustion is a promising prognostic indicator of sepsis-induced acute respiratory distress syndrome (ARDS). Patients with sepsis-related ARDS had reduced levels of HSP90AA1. However, whether the changes in CD8+ T cells were related to HSP90α, encoded by the HSP90AA1 gene, was unclear. This study aimed to examine the regulatory mechanism of HSP90α and its impact on CD8+ T-cell exhaustion in lipopolysaccharide (LPS)-induced acute lung injury (ALI). In this study, by conducting a mouse model of ALI, we found that one week after LPS-induced ALI, CD8+ T cells showed exhaustion characteristics. At this time, proliferation and cytokine release in CD8+ T cells were reduced. The inhibitory costimulatory factors PD-1 and Tim-3, on the other hand, were enhanced. Meanwhile, the expression of HSP90α and STAT1 decreased significantly. The in vitro studies showed that HSP90α stimulation or inhibition affected the CD8+ T-cell exhaustion phenotype. Interference with STAT1 reduced the expression of HSP90α and impaired its regulation of CD8+ T cells. The Co-Immunoprecipitation results indicated that HSP90α can directly or indirectly bind to TOX to regulate TOX expression and downstream signal transduction. In summary, by inhibiting TOX-mediated exhaustion signaling pathways, HSP90α inhibited CD8+ T-cell exhaustion in ALI. The participation of STAT1 in the regulation of HSP90α was required.

4.
Front Psychol ; 15: 1360951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873511

RESUMO

Background: With increasing gaps between the rich and poor, potential risk factors for class conflict have attracted increasing attention from researchers. Although cognitive factors are known to be significant predictors of class-conflict behavior, limited attention has been paid to competence stereotypes of the upper class. When considering economic inequality, people pay more attention to competence stereotypes of the upper class, which may have adverse effects. This study aimed to investigate the relationship between competence stereotypes held by the lower class about the upper class and class conflict, and to test the mediating role of intergroup envy in this relationship and the moderating role of upward social mobility belief. Methods: Data were collected from a convenience sample from a comprehensive university in China. Based on scores on subjective and objective class scales, 284 lower-class college students (103 males and 181 females) aged 18-24 were selected to participate (both their subjective and objective scores were lower than 3 points). Their endorsement of upper-class competence stereotypes, intergroup envy, upward social mobility beliefs, and class conflict were measured using a well-validated self-report questionnaire. Results: The main data were analyzed using correlation analysis, the SPSS macro PROCESS (Model 7), and simple slope analysis. The results show a significant positive correlation between competence stereotypes held by lower-class college students toward the higher class and class conflict, and this connection was mediated by intergroup envy. Moreover, the indirect effect of intergroup envy on this link was moderated by upward social mobility beliefs; this effect was stronger for college students with lower upward social mobility beliefs. Conclusion: This study broadens our understanding of how and when competence stereotypes among the lower class concerning the upper class are related to class conflict. Researchers and policymakers should pay special attention to competence stereotypes of the upper class, especially intergroup envy and class conflict among lower-class individuals with lower levels of upward social mobility beliefs.

5.
Clin Infect Dis ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864601

RESUMO

BACKGROUND: Nirmatrelvir-ritonavir is recommended for persons at risk for severe coronavirus disease 2019 (COVID-19) but remains underutilized. Information on which eligible groups are likely to benefit from treatment is needed. METHODS: We conducted a target trial emulation study in the Veterans Health Administration comparing nirmatrelvir-ritonavir treated versus matched untreated veterans at risk for severe COVID-19 who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from April 2022 through March 2023. We measured incidence of any hospitalization or all-cause mortality at 30 days. Outcomes were measured for the entire cohort, as well as among subgroups defined by 30-day risk of death or hospitalization, estimated using an ensemble risk prediction model. RESULTS: Participants were 87% male with median age 66 years and 16% unvaccinated. Compared with matched untreated participants, those treated with nirmatrelvir-ritonavir (n = 24 205) had a lower 30-day risk for hospitalization (1.80% vs 2.30%; risk difference [RD], -0.50% points [95% confidence interval {CI}: -.69 to -.35]) and death (0.11% vs 0.30%; RD, -0.20 [95% CI: -.24 to -.13]). The greatest reductions in combined hospitalization or death were observed in the highest risk quartile (RD -2.85 [95% CI: -3.94 to -1.76]), immunocompromised persons (RD -1.91 [95% CI: -3.09 to -.74]), and persons aged ≥75 years (RD -1.16 [95% CI: -1.73 to -.59]). No reductions were observed in the 2 lowest risk quartiles or persons younger than 65 years. CONCLUSIONS: Nirmatrelvir-ritonavir was effective in reducing 30-day hospitalization and death in older veterans, those at highest predicted risk for severe outcomes, and immunocompromised groups. Benefit was not observed in younger veterans or groups at lower predicted risk for hospitalization and death.

6.
Clin Transl Med ; 14(6): e1734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888967

RESUMO

BACKGROUND: Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. METHODS: Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single-cell RNA-sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single-cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. RESULTS: There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone-lysine N-methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto-oncogene CCND2, which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. CONCLUSIONS: We revealed the previously underappreciated involvement of the KMT2A‒STAT3/GATA3‒CCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti-inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. HIGHLIGHTS: Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.


Assuntos
Adenoma , Histona-Lisina N-Metiltransferase , Inflamação , Neoplasias das Paratireoides , Humanos , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/metabolismo , Neoplasias das Paratireoides/patologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Inflamação/genética , Inflamação/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proto-Oncogene Mas , Proliferação de Células/genética
7.
Exp Ther Med ; 28(1): 292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38827468

RESUMO

Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.

8.
Int J Womens Health ; 16: 1067-1077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884053

RESUMO

Purpose: The objective of this study was to assess reproductive outcomes of D6 blastocysts transferred on day 6 in comparison to those transferred on day 7 of progesterone exposure in frozen-thawed embryo transfer cycles. Patients and Methods: This retrospective cohort study included 2029 D6 single blastocysts from the first frozen-thawed embryo transfer cycles of patients at the Hospital for Reproductive Medicine Affiliated to Shandong University from February 2017 to January 2020. Participants were divided into Group A (blastocyst transferred on the 6th day of progesterone exposure, n=1634) and Group B (blastocyst transferred on the 7th day of progesterone exposure, n=395). Results: The live birth rate was comparable between Group A and Group B (38.7% versus 38.7%, P=0.999). Subgroup analysis revealed a significantly higher preterm birth rate in D6 single blastocysts transferred on the 7th day than in those transferred on the 6th day of progesterone exposure for natural cycle frozen-thawed embryo transfer (5.2% versus 11.3%, P=0.020). After adjustment for potential confounders, the differences in the preterm birth rate in natural cycles persisted (adjusted odds ratio 2.347, 95% confidence interval 1.129-4.877, P=0.022). Conclusion: In frozen-thawed embryo transfer cycles, transferring on the 6th or 7th day of progesterone exposure of D6 blastocysts did not affect the live birth rate; however, when a natural cycle protocol is adopted, the possible preterm risk of transferring D6 blastocysts on the 7th day of progesterone exposure should be noted.

9.
Sci Rep ; 14(1): 13361, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858543

RESUMO

In this paper, an ultra-wideband stealth antenna with high gain on the basis of asymmetric transmission metasurface (ATMS) is proposed. ATMS can convert an incident y-polarised sphere wave into an x-polarised plane wave at the front side and controls the scattering of the incident y-polarised wave to the back side. Excitation of ATMS via a horn antenna, a low radar cross-section (RCS) and wideband antenna system is designed. Furthermore, through design of the meta-atoms and optimization of the macrosequencing, broadband RCS reduction is achieved. The experimental data indicated the reduction of the RCS of the antenna system by up to 10 dB and more than 20 dB in the frequency range of 10.1 GHz to 18 GHz (relative bandwidth is 56.2%) and 13.9 GHz to 18 GHz (relative bandwidth is 25.7%), respectively. In addition, a 3 dB gain relative bandwidth of 57.4% is achieved between 10 and 18 GHz, with a peak gain of 28.2 dB. It is noteworthy that the high gain and low scattering performance of the antenna are achieved in the same spectral range (10-18 GHz), and there is no interference between the scattering performance and radiation performance of the antenna, which could be controlled separately.

10.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877396

RESUMO

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Assuntos
Morte Celular , Resistência à Doença , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Regulação da Expressão Gênica de Plantas
11.
PLoS One ; 19(5): e0303235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728287

RESUMO

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Assuntos
Autofagia , Galectina 3 , Aprendizado de Máquina , Neurônios , Animais , Ratos , Galectina 3/metabolismo , Galectina 3/genética , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética
12.
Front Public Health ; 12: 1385592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721532

RESUMO

Background: Widowhood is one of the most serious issues affecting the mental health of older persons. China currently has tens of millions of widowed older adult, which is a huge group. It is of great significance to study the impacts of widowhood on their mental health and put forward some measures for improvement. Method: We used China Family Panel Studies (CFPS) data in 2020, which included 4,184 older adults. Linear regression is used to examine the relationship among widowhood, mental health, and social capital. Results: Both short-term and medium- and long-term widowhood lead to a significant increase in depression, which seriously affects the mental health of older people. At the same time, community-level and family-level social capital have significant buffering effects on the loss of mental health caused by widowhood, but this effect is heterogeneous, with different types of social capital playing different roles among different gender groups. Conclusion: The provision of care support by children and good neighborhood relationships can help mitigate the psychological impact of widowhood, and these are areas where social policy can make a difference.


Assuntos
Saúde Mental , Capital Social , Viuvez , Humanos , Viuvez/psicologia , Viuvez/estatística & dados numéricos , Feminino , Masculino , Idoso , Saúde Mental/estatística & dados numéricos , China , Pessoa de Meia-Idade , Depressão/psicologia , Idoso de 80 Anos ou mais , Apoio Social
13.
J Phys Chem Lett ; 15(18): 5008-5015, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38695764

RESUMO

Second-harmonic generation (SHG) has rapidly advanced with the miniaturization of on-chip devices and has found many applications, including optical frequency conversion, nonlinear imaging, and quantum technology. However, owing to the obvious phase-matching constraints involved in nonlinear optical interactions in bulk crystals and the decrease in the length and strength of nonlinear interactions in nanophotonic and surface/interface systems, improving the SHG efficiency and manipulating its optical properties at the nanoscale are challenging tasks. Herein, a monocrystalline silver microplate and nanocube-coupled nanocavity with double-resonance plasmonic modes and an ultrasmall gap were constructed, resulting in efficiently enhanced SHG. In particular, the SHG from the silver microplate (111) is polarization-dependent, and the anisotropy of the SHG in the plasmonic nanocavity can be further controlled via the superposition of symmetries at the interface and plasmonic waveguide-cavity modes. The interfacial SHG provides technology for developing lattice surface atomic arrangement and nanostructure rapid characterization, nonlinear light sources, and on-chip nonlinear nanophotonic devices.

14.
Int Microbiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740654

RESUMO

INTRODUCTION: Sulfur-oxidizing bacteria (SOB) play a key role in the biogeochemical cycling of sulfur. OBJECTIVES: To explore SOB diversity, distribution, and physicochemical drivers in five volcanic lakes and two springs in the Wudalianchi volcanic field, China. METHODS: This study analyzed microbial communities in samples via high-throughput sequencing of the soxB gene. Physical-chemical parameters were measured, and QIIME 2 (v2019.4), R, Vsearch, MEGA7, and Mothur processed the data. Alpha diversity indices and UPGMA clustering assessed community differences, while heat maps visualized intra-sample variations. Canoco 5.0 analyzed community-environment correlations, and NMDS, Adonis, and PcoA explored sample dissimilarities and environmental factor correlations. SPSS v.18.0 tested for statistical significance. RESULTS: The diversity of SOB in surface water was higher than in springs (more than 7.27 times). We detected SOB affiliated to ß-proteobacteria (72.3 %), α-proteobacteria (22.8 %), and γ-proteobacteria (4.2 %) distributed widely in these lakes and springs. Rhodoferax and Cupriavidus were most frequent in all water samples, while Rhodoferax and Bradyrhizobium are dominant in surface waters but rare in springs. SOB genera in both habitats were positively correlated. Co-occurrence analysis identified Bradyrhizobium, Blastochloris, Methylibium, and Metyhlobacterium as potential keystone taxa. Redundancy analysis (RDA) revealed positive correlations between SOB diversity and total carbon (TC), Fe2+, and total nitrogen (TN) in all water samples. CONCLUSION: The diversity and community structure of SOB in volcanic lakes and springs in the Wudalianchi volcanic group were clarified. Moreover, the diversity and abundance of SOB decreased with the variation of water openness, from open lakes to semi-enclosed lakes and enclosed lakes.

15.
Acc Chem Res ; 57(10): 1550-1563, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723018

RESUMO

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

16.
Sci Rep ; 14(1): 12386, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811720

RESUMO

Triple-negative breast cancer (TNBC) has high heterogeneity, poor prognosis, and limited treatment success. Recently, an immunohistochemistry-based surrogate classification for the "Fudan University Shanghai Cancer Center (FUSCC) subtyping" has been developed and is considered more suitable for clinical application. Seventy-one paraffin-embedded sections of surgically resected TNBC were classified into four molecular subtypes using the IHC-based surrogate classification. Genomic analysis was performed by targeted next-generation sequencing and the specificity of the subtypes was explored by bioinformatics, including survival analysis, multivariate Cox regression, pathway enrichment, Pyclone analysis, mutational signature analysis and PHIAL analysis. AKT1 and BRCA1 mutations were identified as independent prognostic factors in TNBC. TNBC molecular subtypes encompass distinct genomic landscapes that show specific heterogeneities. The luminal androgen receptor (LAR) subtype was associated with mutations in PIK3CA and PI3K pathways, which are potentially sensitive to PI3K pathway inhibitors. The basal-like immune-suppressed (BLIS) subtype was characterized by high genomic instability and the specific possession of signature 19 while patients in the immunomodulatory (IM) subtype belonged to the PD-L1 ≥ 1% subgroup with enrichment in Notch signaling, suggesting a possible benefit of immune checkpoint inhibitors and Notch inhibitors. Moreover, mesenchymal-like (MES) tumors displayed enrichment in the receptor tyrosine kinase (RTK)-RAS pathway and potential sensitivity to RTK pathway inhibitors. The findings suggest potential treatment targets and prognostic factors, indicating the possibility of TNBC stratified therapy in the future.


Assuntos
Mutação , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Prognóstico , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Genômica/métodos , Proteína BRCA1/genética , Adulto , Biomarcadores Tumorais/genética , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo
17.
Reproduction ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744310

RESUMO

Previous studies from our group and others have shown increased IncRNA H19 expression in both the eutopic endometrium and the ectopic endometriosis tissue during endometriosis. In this study, we use immunofluorescence, immunohistochemistry and protein quantification to determine that levels of aerobic glycolysis and histone lactylation; which we show are increased in endometriosis tissues. In HESC cells (Human Endometrial Stromal Cells), we found that high H19 expression resulted in abnormal glucose metabolism by examining the levels of glucose, lactate, and ATP and measuring protein levels of enzymes that participate in glycolysis. At the same time, immunofluorescence and western blotting demonstrated increased histone lactylation in H19 overexpressing cells. Altering aerobic glycolysis and histone lactylation levels through the addition of Nala (sodium lactate) and 2-DG demonstrated that increased aerobic glycolysis and histone lactylation levels resulted in enhanced cell proliferation and cell migration, contributing to endometriosis. To validate these findings in vivo, we constructed an endometriosis mouse model, demonstrating similar changes in endometriosis tissues in vivo. Both aerobic glycolysis and histone lactylation levels were elevated in endometriotic lesions. Taken together, these data demonstrate elevated expression levels of H19 in endometriosis patients promote abnormal glucose metabolism and elevated histone lactylation levels in vivo, enhancing cell proliferation and migration and promoting the progression of endometriosis. Our study provides a functional link between H19 expression and histone lactylation and glucose metabolism in endometriosis, providing new insights into disease mechanisms that could result in novel therapeutic approaches.

18.
AJOG Glob Rep ; 4(2): 100353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38818346

RESUMO

We reported 5 patients with unilateral or bilateral tubal discontinuity between the ampulla and fimbria, occasionally detected through laparoscopy combined with hysteroscopy at the Reproductive Hospital Affiliated with Shandong University from 2017 to 2023. Three cases were observed to have this malformation on the left fallopian tube, 1 case on the right side, and 1 case bilaterally. None of these cases were combined with urological malformations. After surgery, there was 1 instance of postoperative delivery, 1 ongoing pregnancy, and 3 not yet conceived. The congenital ampulla and fimbria interruption of the fallopian tube may be independent of other significant deformities of reproductive or renal tracts. However, it can lead to hydrosalpinx and primary or secondary infertility. Surgical management options, such as salpingostomy, salpingectomy, and tubal ligation, have shown the potential to improve pregnancy outcomes.

19.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759288

RESUMO

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Assuntos
Astrócitos , Disfunção Cognitiva , Sistema Glinfático , Hipocampo , Ketamina , Animais , Ketamina/farmacologia , Ketamina/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Camundongos , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Camundongos Endogâmicos C57BL , Células Cultivadas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética
20.
Nat Commun ; 15(1): 4498, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802467

RESUMO

Recycling strategies for mixed plastics and textile blends currently aim for recycling only one of the components. Here, we demonstrate a water coupling strategy to co-hydrolyze polyester/cotton textile blends into polymer monomers and platform chemicals in gamma-valerolactone. The blends display a proclivity for achieving an augmented 5-hydroxymethylfurfural yield relative to the degradation of cotton alone. Controlled experiments and preliminary mechanistic studies underscore that the primary driver behind this heightened conversion rate lies in the internal water circulation. The swelling and dissolving effect of gamma-valerolactone on polyester enables a fast hydrolysis of polyester at much lower concentration of acid than the one in the traditional hydrolysis methods, effectively mitigating the excessive degradation of cotton-derived product and undesirable product formation. In addition, the system is also applicable to different kinds of blends and PET mixed plastics. This strategy develops an attractive path for managing end-of-life textiles in a sustainable and efficient way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...