Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 13: 91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118823

RESUMO

BACKGROUND: Cultivated strawberry (Fragaria × ananassa Duch.) has homoeologous chromosomes because of allo-octoploidy. For example, two homoeologous chromosomes that belong to different sub-genome of allopolyploids have similar base sequences. Thus, when conducting de novo assembly of DNA sequences, it is difficult to determine whether these sequences are derived from the same chromosome. To avoid the difficulties associated with homoeologous chromosomes and demonstrate the possibility of sequencing allopolyploids using single chromosomes, we conducted sequence analysis using microdissected single somatic chromosomes of cultivated strawberry. RESULTS: Three hundred and ten somatic chromosomes of the Japanese octoploid strawberry 'Reiko' were individually selected under a light microscope using a microdissection system. DNA from 288 of the dissected chromosomes was successfully amplified using a DNA amplification kit. Using next-generation sequencing, we decoded the base sequences of the amplified DNA segments, and on the basis of mapping, we identified DNA sequences from 144 samples that were best matched to the reference genomes of the octoploid strawberry, F. × ananassa, and the diploid strawberry, F. vesca. The 144 samples were classified into seven pseudo-molecules of F. vesca. The coverage rates of the DNA sequences from the single chromosome onto all pseudo-molecular sequences varied from 3 to 29.9%. CONCLUSION: We demonstrated an efficient method for sequence analysis of allopolyploid plants using microdissected single chromosomes. On the basis of our results, we believe that whole-genome analysis of allopolyploid plants can be enhanced using methodology that employs microdissected single chromosomes.

2.
DNA Res ; 21(2): 169-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24282021

RESUMO

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.


Assuntos
Fragaria/genética , Genoma de Planta , Repetições de Microssatélites , Filogenia , Poliploidia , Análise de Sequência de DNA
3.
Am J Bot ; 96(3): 713-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21628226

RESUMO

The strawberry genus, Fragaria (Rosaceae), has a base chromosome number of x = 7. Cultivated strawberries (F. ×ananassa nothosubsp. ananassa) are octoploid (2n = 8x = 56) and first hybridized from F. chiloensis subsp. chiloensis forma chiloensis × F. virginiana subsp. virginiana. Europe has no known native octoploid species, and only one Asian octoploid species has been reported: F. iturupensis, from Iturup Island. Our objective was to examine the chromosomes of F. iturupensis. Ploidy levels of wild strawberry species, include diploid (2n = 2x = 14), tetraploid (2n = 4x = 28), pentaploid (2n = 5x = 35), hexaploid (2n = 6x = 42), octoploid (2n = 8x = 56), and nonaploid (2n = 9x = 63). Artificial triploid (2n = 3x = 21), tetraploid, pentaploid, octoploid, decaploid (2n = 10x = 70), 16-ploid, and 32-ploid plants have been constructed and cultivated. Surprisingly, chromosome counts and flow cytometry revealed that F. iturupensis includes natural decaploid genotypes with 2n = 10x = 70 chromosomes. This report is the first of a naturally occurring decaploid strawberry species. Further research on F. iturupensis and exploration on northern Pacific islands is warranted to ascertain the phylogeny and development of American octoploid species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...