Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 694: 149392, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38142581

RESUMO

Thioredoxin interacting protein (TXNIP) has emerged as a significant regulator of ß-cell mass and loss, rendering it an attractive target for treating diabetes. We previously showed that Shiga-Y6, a fluorinated curcumin derivative, inhibited TXNIP mRNA and protein expression in vitro, raising the question of whether the same effect could be translated in vivo. Herein, we examined the effect of Shiga-Y6 on TNXIP levels and explored its therapeutic potential in a mouse model of diabetes, Akita mice. We intraperitoneally injected Shiga-Y6 (SY6; 30 mg/kg of body weight) or vehicle into 8-week-old Akita mice for 28 consecutive days. On day 29, the mice were euthanized, following which the serum levels of glucose, insulin, and glucagon were measured using ELISA, the expression of TXNIP in pancreatic tissue lysates was determined using western blotting, and the level of ß-cell apoptosis was assessed using the TUNEL assay. TXNIP levels in the pancreatic tissue of Akita mice were significantly elevated compared with wild-type (WT) mice. Shiga-Y6 administration for 28 days significantly lowered those levels compared with Akita mice that received vehicle to a level comparable to WT mice. In immunohistochemical analysis, both α- to ß-cell ratio and the number of apoptotic ß-cells were significantly reduced in SY6-treated Akita mice, compared with vehicle-treated Akita mice. Findings from the present study suggest a potential of Shiga-Y6 as an antidiabetic agent through lowering TXNIP protein levels and ameliorating pancreatic ß-cells apoptosis.


Assuntos
Curcumina , Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Animais de Doenças , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Acta Histochem Cytochem ; 56(2): 21-27, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37124956

RESUMO

Mitochondrial ferritin (FtMt) is an endogenous iron-storage protein localized in the mitochondria. FtMt is mainly observed in restricted tissues, such as those in the testis, islets of Langerhans, and brain. Further, it may protect cells from oxidative stress in neurodegenerative diseases, including Alzheimer's disease and progressive supranuclear palsy. However, the role of FtMt in Parkinson's disease (PD) remains unclear. Therefore, the current study investigated the localization and expression level of FtMt in the midbrain of patients with PD and healthy controls using immunohistochemical techniques. FtMt immunoreactivity was mainly detected in dopaminergic neurons in the substantia nigra pars compacta (SNc) in both healthy controls and patients with PD. In addition, FtMt-positive particles were observed outside the dopaminergic neurons in patients with PD. Based on a quantitative comparison, patients with PD had a significantly upregulated FtMt immunoreactivity in dopaminergic neurons than healthy controls. Our result might be helpful in future studies on the role of FtMt in PD.

3.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672153

RESUMO

The precision of colocalization analysis is enhanced by 3D and is potentially more accurate than 2D. Even though 3D improves the visualization of colocalization analysis, rendering a colocalization model may generate a model with numerous polygons. We developed a 3D colocalization model of FtMt/LC3 followed by simplification. Double immunofluorescence staining of FtMt and LC3 was conducted, and stacked images were acquired. We used IMARIS to render the 3D colocalization model of FtMt/LC3 and further processed it with MeshLab to decimate and generate a less complex colocalization model. We examined the available simplification algorithm using MeshLab in detail and evaluated the feasibility of each procedure in generating a model with less complexity. The quality of the simplified model was subsequently assessed. MeshLab's available shaders were scrutinized to facilitate the spatial colocalization determination. Finally, we showed that QECD was the most effective method for reducing the polygonal complexity of the colocalization model without compromising its quality. In addition, we would recommend implementing the x-ray shader, which we found useful for visualizing colocalization. As 3D was found to be more accurate in quantifying colocalization, our study provides a novel and dependable method for rendering 3D models for colocalization analysis.


Assuntos
Imageamento Tridimensional , Imageamento Tridimensional/métodos , Raios X , Imunofluorescência
4.
Acta Histochem Cytochem ; 56(6): 87-94, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38318103

RESUMO

In the pathogenesis of Alzheimer's disease (AD), highly neurotoxic amyloid-ß (Aß) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer's disease. However, Aß oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aß oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aß oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aß oligomers. TxCo1 immunohistochemistry revealed Aß oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aß oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.

5.
J Alzheimers Dis ; 89(3): 835-848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964178

RESUMO

BACKGROUND: Tripeptide Met-Lys-Pro (MKP), a component of casein hydrolysates, has effective angiotensin-converting enzyme (ACE) inhibitory activity. Brain angiotensin II enzyme activates the NADPH oxidase complex via angiotensin II receptor type 1 (AT1) and enhances oxidative stress injury. ACE inhibitors improved cognitive function in Alzheimer's disease (AD) mouse models and previous clinical trials. Thus, although undetermined, MKP may be effective against pathological amyloid-ß (Aß) accumulation-induced cognitive impairment. OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice. METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aß40, Aß42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice. RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aß40, Aß42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice. CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aß accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Angiotensina II , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Caseínas/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/uso terapêutico , Oligopeptídeos , Preparações Farmacêuticas , Presenilina-1/genética , Receptores de Angiotensina , Fator de Necrose Tumoral alfa
6.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566132

RESUMO

Amyloid-ß (Aß) accumulation and tauopathy are considered the pathological hallmarks of Alzheimer's disease (AD), but attenuation in choline signaling, including decreased nicotinic acetylcholine receptors (nAChRs), is evident in the early phase of AD. Currently, there are no drugs that can suppress the progression of AD due to a limited understanding of AD pathophysiology. For this, diagnostic methods that can assess disease progression non-invasively before the onset of AD symptoms are essential, and it would be valuable to incorporate the concept of neurotheranostics, which simultaneously enables diagnosis and treatment. The neuroprotective pathways activated by nAChRs are attractive targets as these receptors may regulate microglial-mediated neuroinflammation. Microglia exhibit both pro- and anti-inflammatory functions that could be modulated to mitigate AD pathogenesis. Currently, single-cell analysis is identifying microglial subpopulations that may have specific functions in different stages of AD pathologies. Thus, the ability to image nAChRs and microglia in AD according to the stage of the disease in the living brain may lead to the development of new diagnostic and therapeutic methods. In this review, we summarize and discuss the recent findings on the nAChRs and microglia, as well as their methods for live imaging in the context of diagnosis, prophylaxis, and therapy for AD.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglia/metabolismo , Receptores Nicotínicos/metabolismo
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008961

RESUMO

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.


Assuntos
Ferritinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Substância Negra/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Ferritinas/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mitofagia , Ligação Proteica , Transporte Proteico , Substância Negra/patologia , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/etiologia
8.
Front Pharmacol ; 13: 1035220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686668

RESUMO

Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.

9.
Biochem Biophys Rep ; 28: 101131, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541343

RESUMO

One of the neuropathological hallmarks of Alzheimer's disease (AD)-causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline-is amyloid-ß (Aß) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction-a mixture of naturally occurring of vitamin E analogs-to inhibit Aß aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs-α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)-on Aß aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aß aggregation at 10 µM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aß disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aß oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aß aggregation and oligomerization as well as disaggregating preformed fibrils.

10.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500775

RESUMO

Thioredoxin-interacting protein (TXNIP) is involved in multiple disease-associated functions related to oxidative stress, especially by inhibiting the anti-oxidant- and thiol-reducing activity of thioredoxin (TXN). Shiga-Y5 (SY5), a fluorine-19 magnetic resonance probe for detecting amyloid-ß deposition in the brain, previously showed therapeutic effects in a mouse model of Alzheimer's disease; however, the mechanism of action of SY5 remains unclear. SY5 passes the blood-brain barrier and then undergoes hydrolysis to produce a derivative, Shiga-Y6 (SY6), which is a TXNIP-negative regulator. Therefore, this study investigates the therapeutic role of SY5 as the prodrug of SY6 in the thioredoxin system in the brain of a mouse model of Alzheimer's disease. The intraperitoneal injection of SY5 significantly inhibited TXNIP mRNA (p = 0.0072) and protein expression (p = 0.0143) induced in the brain of APP/PS1 mice. In contrast, the levels of TXN mRNA (p = 0.0285) and protein (p = 0.0039) in the brain of APP/PS1 mice were increased after the injection of SY5. The ratio of TXN to TXNIP, which was decreased (p = 0.0131) in the brain of APP/PS1 mice, was significantly increased (p = 0.0072) after the injection of SY5. These results suggest that SY5 acts as a prodrug of SY6 in targeting the thioredoxin system and could be a potential therapeutic compound in oxidative stress-related diseases in the brain.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Curcumina/farmacologia , Modelos Animais de Doenças , Sondas Moleculares/farmacologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Curcumina/administração & dosagem , Curcumina/análogos & derivados , Flúor , Injeções Intraperitoneais , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Estrutura Molecular
11.
Acta Histochem Cytochem ; 54(3): 97-104, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34276103

RESUMO

Mitochondrial ferritin (FtMt) is a novel ferritin that is localized in the mitochondria. FtMt expression is low in the liver and spleen, and high in the heart, testis, and brain. We previously detected FtMt in dopaminergic neurons in the substantia nigra pars compacta (SNc) in human and monkey midbrains. We investigated the localization and expression of FtMt in the midbrain of patients with progressive supranuclear palsy (PSP) and controls using a monoclonal antibody (C65-2) against human FtMt. FtMt immunoreactivity was weakly detected in neuromelanin-containing neurons in the SNc and ventral tegmental area (VTA) of control cases compared with PSP, which exhibited a remarkable increase in FtMt immunoreactivity. Preincubation of C65-2 with the immunizing FtMt peptide significantly reduced the staining, indicating the specificity of C65-2. Several puncta were observed outside the neurons of PSP, in contrast with the control cases. Double immunofluorescence histochemistry for FtMt and tyrosine hydroxylase (TH), glial fibrillary acidic protein, and Iba1 showed localization of FtMt in dopaminergic neurons, microglia, and astrocytes in PSP. Furthermore, FtMt immunoreactivity was detected in a few TH-negative neurons. In the SNc and VTA, FtMt immunoreactivity colocalized with phosphorylated tau immunoreactivity. Our results indicate that FtMt is involved in the pathology of PSP. Clarifying the involvement of FtMt in PSP is of great interest.

12.
Brain Res ; 1767: 147542, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077764

RESUMO

Cerebral infarction causes motor, sensory, and cognitive impairments. Although rehabilitation enhances recovery of activities of daily living after cerebral infarction, its mechanism remains elusive due to the lack of reproducibility and low survival rate of brain ischemic model animals. Here, to investigate the relationship between rehabilitative intervention, motor function, and pathophysiological remodeling of the tissue in the ipsilateral hemisphere after cerebral infarction, we took advantage of a highly reproducible model of cerebral infarction using C.B-17/Icr-+/+Jcl mice. In this model, we confirmed that voluntary running exercise improved functional recovery after ischemia. Exercise did not alter the volume of infarction or survived cortex, or the number of NeuN-labeled cells in the peri-infarct cortex. In mice who did not exercise, the number of basal dendritic spines of layer 5 pyramidal cells decreased in the peri-infarct motor cortex, whereas in mice who exercised it remained at the normal level. The voluntary exercise intervention maintained basal dendritic spine density within the peri-infarct area, which may reflect an adaptive remodeling of the surviving neural circuitry that might contribute to promoting the recovery of activities of daily living.


Assuntos
Isquemia Encefálica/terapia , Espinhas Dendríticas/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Infarto Cerebral/fisiopatologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CBA , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/métodos , Células Piramidais , Reprodutibilidade dos Testes , Corrida
13.
J Alzheimers Dis Rep ; 5(1): 263-274, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34113783

RESUMO

BACKGROUND: Emerging evidence indicates that the misfolded tau protein can propagate aggregates between cells in a prion-like manner. This prion activity has been typically studied in brain extracts of patients with Alzheimer's disease (AD), but not in the olfactory region that can be a potential biomarker in AD. OBJECTIVE: To investigate the prion seeding activity of tau in nasal mucosa tissues using a cell culture model of tau propagation. METHODS: Brain and nasal mucosa homogenates were added to HEK293T cells expressing three repeat or four-repeat domains of tau with the L266V, V337M (3RD*VM) and P301L and V377M mutations (4RD*LM) fused to the enhanced green fluorescence protein (EGFP) respectively. We also measured the level of phosphorylated tau (p-tau), total tau (t-tau), and p-tau/t-tau ratio and performed correlation analysis between tau prion activity and the level of tau. RESULTS: We found that brain and nasal tissue homogenates from patients with AD significantly induced tau aggregation in HEK293T cells either expressing tau 3RD*VM-EGFP or 4RD*LM-EGFP compared with control brain and nasal tissue homogenates. The levels of p-tau and p-tau/t-tau ratio were significantly increased in the brain of patients with AD; however, no significant difference was found in nasal tissue compared with their respective control tissue homogenates. CONCLUSION: These results suggest that the nasal tissues contain tau seeds, similar to the brain, albeit without changes in the levels of p-tau and t-tau. Therefore, a cellular bioassay using nasal tissues would have great potential as an AD biomarker because of the usefulness of nasal tissue biopsy.

14.
Sci Rep ; 11(1): 9623, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953293

RESUMO

Tau, a family of microtubule-associated proteins, forms abnormal intracellular inclusions, so-called tau pathology, in a range of neurodegenerative diseases collectively known as tauopathies. The rTg4510 mouse model is a well-characterized bitransgenic F1 hybrid mouse model of tauopathy, which was obtained by crossing a Camk2α-tTA mouse line (on a C57BL/6 J background) with a tetO-MAPT*P301L mouse line (on a FVB/NJ background). The aim of this study was to investigate the effects of the genetic background and sex on the accumulation of tau pathology in reciprocal F1 hybrids of rTg4510 mice, i.e., rTg4510 on the (C57BL/6 J × FVB/NJ)F1 background (rTg4510_CxF) and on the (FVB/NJ × C57BL/6 J)F1 background (rTg4510_FxC). As compared with rTg4510_CxF mice, the rTg4510_FxC mice showed marked levels of tau pathology in the forebrain. Biochemical analyses indicated that the accumulation of abnormal tau species was accelerated in rTg4510_FxC mice. There were strong effects of the genetic background on the differential accumulation of tau pathology in rTg4510 mice, while sex had no apparent effect. Interestingly, midline-1 (Mid1) was identified as a candidate gene associated with this difference and exhibited significant up/downregulation according to the genetic background. Mid1 silencing with siRNA induced pathological phosphorylation of tau in HEK293T cells that stably expressed human tau with the P301L mutation, suggesting the role of Mid1 in pathological alterations of tau. Elucidation of the underlying mechanisms will provide novel insights into the accumulation of tau pathology and is expected to be especially informative to researchers for the continued development of therapeutic interventions for tauopathies.


Assuntos
Encéfalo/metabolismo , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Corpos de Inclusão/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fosforilação , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
15.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806326

RESUMO

Recent evidence suggests that the formation of soluble amyloid ß (Aß) aggregates with high toxicity, such as oligomers and protofibrils, is a key event that causes Alzheimer's disease (AD). However, understanding the pathophysiological role of such soluble Aß aggregates in the brain in vivo could be difficult due to the lack of a clinically available method to detect, visualize, and quantify soluble Aß aggregates in the brain. We had synthesized a novel fluorinated curcumin derivative with a fixed keto form, named as Shiga-Y51, which exhibited high selectivity to Aß oligomers in vitro. In this study, we investigated the in vivo detection of Aß oligomers by fluorine-19 (19F) magnetic resonance imaging (MRI) using Shiga-Y51 in an APP/PS1 double transgenic mouse model of AD. Significantly high levels of 19F signals were detected in the upper forebrain region of APP/PS1 mice compared with wild-type mice. Moreover, the highest levels of Aß oligomers were detected in the upper forebrain region of APP/PS1 mice in enzyme-linked immunosorbent assay. These findings suggested that 19F-MRI using Shiga-Y51 detected Aß oligomers in the in vivo brain. Therefore, 19F-MRI using Shiga-Y51 with a 7 T MR scanner could be a powerful tool for imaging Aß oligomers in the brain.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Curcumina/metabolismo , Modelos Animais de Doenças , Imagem por Ressonância Magnética de Flúor-19/métodos , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Encéfalo/metabolismo , Curcumina/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo
16.
Biomaterials ; 270: 120686, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33540171

RESUMO

The accumulation of ß-amyloid (Aß) aggregates in the brain occurs early in the progression of Alzheimer's disease (AD), and non-fibrillar soluble Aß oligomers are particularly neurotoxic. During binding to Aß fibrils, curcumin, which can exist in an equilibrium state between its keto and enol tautomers, exists predominantly in the enol form, and binding activity of the keto form to Aß fibrils is much weaker. Here we described the strong binding activity the keto form of curcumin derivative Shiga-Y51 shows for Aß oligomers and its scant affinity for Aß fibrils. Furthermore, with imaging mass spectrometry we revealed the blood-brain barrier permeability of Shiga-Y51 and its accumulation in the cerebral cortex and the hippocampus, where Aß oligomers were mainly localized, in a mouse model of AD. The keto form of curcumin derivatives like Shiga-Y51 could be promising seed compounds to develop imaging probes and therapeutic agents targeting Aß oligomers in the brain.


Assuntos
Doença de Alzheimer , Curcumina , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Fragmentos de Peptídeos
17.
Biochem Biophys Res Commun ; 532(4): 668-674, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32912630

RESUMO

Thioredoxin-interacting protein (TXNIP) has multiple disease-associated functions including inducing oxidative stress by inhibiting the anti-oxidant and thiol reducing activity of thioredoxin (TRX), reducing cellular glucose transport, and is a component of the activated inflammasome complex. Increased expression of TXNIP is encountered in diabetic conditions of high glucose. Curcumin and chemical derivatives have multiple therapeutic properties as anti-inflammatories, anti-oxidants, amyloid aggregation inhibitors and modulate a number of cellular signaling pathways. Using a fluorinated-derivative of curcumin (designated Shiga-Y6), we showed significant inhibition of TXNIP mRNA and protein expression, and induction of TRX mRNA and protein in ARPE-19 retinal pigment epithelial cells and THP-1-derived macrophages, while the non-fluorinated structural equivalent (Shiga-Y52) and native curcumin did not show these same effects. Shiga-Y6 was effective in reducing high glucose, endoplasmic reticulum stress-induced TXNIP in ARPE-19 cells, and reducing lipopolysaccharide and endoplasmic stress-induced proinflammatory gene expression in THP-1 macrophages. Moreover, TXNIP-knockdown experiments showed that the anti-inflammatory effect of Shiga-Y6 in LPS-stimulated THP-1 macrophages was TXNIP-independent.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Transporte/metabolismo , Macrófagos/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Anti-Inflamatórios/química , Proteínas de Transporte/genética , Linhagem Celular , Curcumina/farmacologia , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Células THP-1 , Tiorredoxinas/metabolismo
18.
Front Neurosci ; 14: 845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922259

RESUMO

We have previously reported that casein hydrolysate, CH-3, from bovine milk and casein-derived tripeptide Met-Lys-Pro (MKP) has ACE inhibitory activity and reduces blood pressure. In this study, we investigated the therapeutic effects of MKP in a hypertensive rat model (7-week-old male SHRSP/Izm rats). For long term evaluation, rats were fed either a diet containing CH-3 or normal diet. The survival rate of SHRSP rats was significantly improved by intake of CH-3 for 181 days. For short term evaluation, rats were orally administered synthetic tripeptide MKP or distilled water for 4 weeks. MRI study demonstrated that hemorrhagic lesions were observed in two of five rats in the control group, while no hemorrhagic lesions were observed in the MKP group. Volumetric analysis using MRI revealed that MKP administration inhibited atrophy of diencephalic regions. Histological examinations revealed that hemorrhage areas and astrogliosis in the hippocampus and cerebral cortex were lower in the MKP group than in the control group. Gene expression analysis indicated that MKP administration reduced expression of genes related to cerebral circulation insufficiency such as immune responses (Cd74 and Prkcd), response to hypoxia (Ddit4, Apold1, and Prkcd), reactive oxygen species metabolic process (Ddit4 and Pdk4), and apoptotic process (Ddit4, Prkcd, and Sgk1), suggesting that MKP administration prevented cerebral ischemia associated with hypertension. In addition, some genes encoding responses to hormone stimulus (Fos, Dusp1, and Sik1) were also downregulated. Serum aldosterone and corticosterone levels were also significantly decreased following MKP administration. The present study indicates that MKP shows neuroprotective effects in SHRSP rats by regulating cerebral circulation insufficiency and corticoid levels. MKP administration may therefore be a potential therapeutic strategy for hypertensive brain diseases such as cerebrovascular disease.

19.
J Pharmacol Sci ; 144(3): 183-187, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32807663

RESUMO

Oxidative stress is associated with the progression of the neurodegenerative diseases Parkinson's disease (PD) and cerebral ischemia. Recently, 5-aminolevulinic acid (5-ALA), an intermediate in the porphyrin synthesis pathway, was reported to exert antioxidative effects on macrophages and cardiomyocytes. Here, we demonstrated the neuroprotective effects of 5-ALA using rat models of PD and ischemia as well as in vitro in SH-SY5Y cells. 5-ALA partially prevented neurodegeneration in each condition. These results suggest that 5-ALA has a potential for promising therapeutic agent to protect against neurodegeneration exacerbated by oxidative stress.


Assuntos
Isquemia Encefálica/patologia , Ácidos Levulínicos/farmacologia , Degeneração Neural , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/etiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Ácidos Levulínicos/uso terapêutico , Masculino , Degeneração Neural/prevenção & controle , Doença de Parkinson/etiologia , Ratos Wistar , Acidente Vascular Cerebral/etiologia , Ácido Aminolevulínico
20.
Org Biomol Chem ; 18(30): 5843-5849, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32756663

RESUMO

Iron deposits are often observed in the brains of patients with neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. This study outlines the development of F-Nox-1 as the first example of a 19F-MRI probe that can selectively detect Fe(ii) in aqueous solutions. The use of tetrafluoro-p-phenylenediamine (TFPDA) as a 19F signal emitter with an Fe(ii)-selective chemical switch, based on our previously reported N-oxide chemistry, yielded a readout of a symmetry-dependent 19F signal change in response to Fe(ii). The addition of Fe(ii) ions to F-Nox-1 triggered a 19F signal change, both in the chemical shift and signal intensity, and the response was highly selective to Fe(ii) over other biologically relevant metal ions. The probe could also detect Fe(ii) in serum containing various biological contaminants by 19F magnetic resonance imaging (19F-MRI). Imaging of soluble Fe(ii) species, which is the major component of water-soluble iron species, by 19F-MRI will potentially enable the direct monitoring of the elevation of Fe(ii) levels prior to the formation of iron deposits, which is a potential risk factor for neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...