Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047230

RESUMO

Pairs of pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). Previously, we achieved full productivity of cell-free protein synthesis for bulky non-canonical amino acids, including Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS with structure-based mutations in and around the amino acid binding pocket (first-layer and second-layer mutations, respectively). Recently, the PylRS·tRNAPyl pair from a methanogenic archaeon ISO4-G1 was used for genetic code expansion. In the present study, we determined the crystal structure of the methanogenic archaeon ISO4-G1 PylRS (ISO4-G1 PylRS) and compared it with those of structure-known PylRSs. Based on the ISO4-G1 PylRS structure, we attempted the site-specific incorporation of Nε-(p-ethynylbenzyloxycarbonyl)-L-lysine (pEtZLys) into proteins, but it was much less efficient than that of TCO*Lys with M. alvus PylRS mutants. Thus, the first-layer mutations (Y125A and M128L) of ISO4-G1 PylRS, with no additional second-layer mutations, increased the protein productivity with pEtZLys up to 57 ± 8% of that with TCO*Lys at high enzyme concentrations in the cell-free protein synthesis.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/metabolismo , Aminoácidos/genética , Lisina/metabolismo , Código Genético , RNA de Transferência/genética , RNA de Transferência/metabolismo , Methanosarcina/genética
2.
PLoS One ; 15(8): e0237883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866169

RESUMO

Although whole-genome sequencing has provided novel insights into Neisseria meningitidis, many open reading frames have only been annotated as hypothetical proteins with unknown biological functions. Our previous genetic analyses revealed that the hypothetical protein, NMB1345, plays a crucial role in meningococcal infection in human brain microvascular endothelial cells; however, NMB1345 has no homology to any identified protein in databases and its physiological function could not be elucidated using pre-existing methods. Among the many biological technologies to examine transient protein-protein interaction in vivo, one of the developed methods is genetic code expansion with non-canonical amino acids (ncAAs) utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair from Methanosarcina species: However, this method has never been applied to assign function-unknown proteins in pathogenic bacteria. In the present study, we developed a new method to genetically incorporate ncAAs-encoded photocrosslinking probes into N. meningitidis by utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair and elucidated the biological function(s) of the NMB1345 protein. The results revealed that the NMB1345 protein directly interacts with PilE, a major component of meningococcal pili, and further physicochemical and genetic analyses showed that the interaction between the NMB1345 protein and PilE was important for both functional pilus formation and meningococcal infectious ability in N. meningitidis. The present study using this new methodology for N. meningitidis provides novel insights into meningococcal pathogenesis by assigning the function of a hypothetical protein.


Assuntos
Aminoácidos/genética , Reagentes de Ligações Cruzadas/metabolismo , Luz , Neisseria meningitidis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Encéfalo/irrigação sanguínea , Endocitose , Células Endoteliais/microbiologia , Fímbrias Bacterianas/metabolismo , Humanos , Microvasos/patologia , Mutação/genética , Plasmídeos/genética
3.
ACS Synth Biol ; 9(4): 718-732, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32182048

RESUMO

Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). In this study, we achieved the full productivity of cell-free protein synthesis for difficult, bulky non-canonical amino acids, such as Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-l-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS. First, based on the crystal structure of M. alvus PylRS, the productivities for various non-canonical amino acids were greatly increased by rational engineering of the amino acid-binding pocket. The productivities were further enhanced by using a much higher concentration of PylRS over that of M. mazei PylRS, or by mutating the outer layer of the amino acid-binding pocket. Thus, we achieved full productivity even for TCO*Lys. The quantity and quality of the cell-free-produced antibody fragment containing TCO*Lys were drastically improved. These results demonstrate the importance of full productivity for the expanded genetic code.


Assuntos
Aminoacil-tRNA Sintetases , Euryarchaeota/genética , Código Genético/genética , Engenharia de Proteínas/métodos , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Sistema Livre de Células , Euryarchaeota/enzimologia , Fragmentos Fab das Imunoglobulinas/genética , Modelos Moleculares , Trastuzumab/genética
4.
Cell Chem Biol ; 26(7): 936-949.e13, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31031143

RESUMO

Pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl have been extensively used for genetic-code expansion. A Methanosarcina mazei PylRS mutant bearing the Y306A and Y384F mutations (PylRS(Y306A/Y384F)) encodes various bulky non-natural lysine derivatives by UAG. In this study, we examined how PylRS(Y306A/Y384F) recognizes many amino acids. Among 17 non-natural lysine derivatives, Nɛ-(benzyloxycarbonyl)lysine (ZLys) and 10 ortho/meta/para-substituted ZLys derivatives were efficiently ligated to tRNAPyl and were incorporated into proteins by PylRS(Y306A/Y384F). We determined crystal structures of 14 non-natural lysine derivatives bound to the PylRS(Y306A/Y384F) catalytic fragment. The meta- and para-substituted ZLys derivatives are snugly accommodated in the productive mode. In contrast, ZLys and the unsubstituted or ortho-substituted ZLys derivatives exhibited an alternative binding mode in addition to the productive mode. PylRS(Y306A/Y384F) displayed a high aminoacylation rate for ZLys, indicating that the double-binding mode minimally affects aminoacylation. These precise substrate recognition mechanisms by PylRS(Y306A/Y384F) may facilitate the structure-based design of novel non-natural amino acids.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Aminoacil-tRNA Sintetases/genética , Cristalografia por Raios X , Escherichia coli , Código Genético/genética , Lisina/química , Lisina/genética , Methanosarcina/genética , Modelos Moleculares , Engenharia de Proteínas/métodos , RNA de Transferência/metabolismo
5.
mBio ; 9(6)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538184

RESUMO

While Neisseria meningitidis typically exists in an asymptomatic nasopharyngeal carriage state, it may cause potentially lethal diseases in humans, such as septicemia or meningitis, by invading deeper sites in the body. Since the nutrient compositions of human cells are not always conducive to meningococci, N. meningitidis needs to exploit nutrients from host environments. In the present study, the utilization of cysteine by the meningococcal cysteine transport system (CTS) was analyzed for the pathogenesis of meningococcal infections. A N. meningitidis strain deficient in one of the three cts genes annotated as encoding cysteine-binding protein (cbp) exhibited approximately 100-fold less internalization into human brain microvascular endothelial cells (HBMEC) than the wild-type strain. This deficiency was restored by complementation with the three cts genes together, and the infectious phenotype of HBMEC internalization correlated with cysteine uptake activity. However, efficient accumulation of ezrin was observed beneath the cbp mutant. The intracellular survival of the cbp mutant in HBMEC was markedly reduced, whereas equivalent reductions of glutathione concentrations and of resistance to reactive oxygens species in the cbp mutant were not found. The cbp mutant grew well in complete medium but not in synthetic medium supplemented with less than 300 µM cysteine. Taking cysteine concentrations in human cells and other body fluids, including blood and cerebrospinal fluid, into consideration, the present results collectively suggest that the meningococcal CTS is crucial for the acquisition of cysteine from human cells and participates in meningococcal nutrient virulence.IMPORTANCENeisseria meningitidis colonizes at a nasopharynx of human as a unique host and has many strains that are auxotrophs for amino acids for their growth. To cause invasive meningococcal diseases (IMD) such as sepsis and meningitis, N. meningitidis passes through epithelial and endothelial barriers and infiltrates into blood and cerebrospinal fluid as well as epithelial and endothelial cells. However, meningococcal nutrients, including cysteine, become less abundant when it more deeply infiltrates the human body even during inflammation, such that N. meningitidis has to acquire nutrients in order to survive/persist, disseminate, and proliferate in humans. This was the first study to examine the relationship between meningococcal cysteine acquisition and the pathogenesis of meningococcal infections. The results of the present study provide insights into the mechanisms by which pathogens with auxotrophs acquire nutrients in hosts and may also contribute to the development of treatments and prevention strategies for IMD.


Assuntos
Cisteína/metabolismo , Células Endoteliais/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/metabolismo , Fatores de Virulência/metabolismo , Células Cultivadas , Meios de Cultura/química , Endocitose , Deleção de Genes , Teste de Complementação Genética , Humanos , Proteínas de Membrana Transportadoras/deficiência , Neisseria meningitidis/genética , Virulência , Fatores de Virulência/deficiência
6.
Nat Chem Biol ; 14(4): 368-374, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440735

RESUMO

Protein glycosylation regulates many cellular processes. Numerous glycosyltransferases with broad substrate specificities have been structurally characterized. A novel inverting glycosyltransferase, EarP, specifically transfers rhamnose from dTDP-ß-L-rhamnose to Arg32 of bacterial translation elongation factor P (EF-P) to activate its function. Here we report a crystallographic study of Neisseria meningitidis EarP. The EarP structure contains two tandem Rossmann-fold domains, which classifies EarP in glycosyltransferase superfamily B. In contrast to other structurally characterized protein glycosyltransferases, EarP binds the entire ß-sheet structure of EF-P domain I through numerous interactions that specifically recognize its conserved residues. Thus Arg32 is properly located at the active site, and causes structural change in a conserved dTDP-ß-L-rhamnose-binding loop of EarP. Rhamnosylation by EarP should occur via an SN2 reaction, with Asp20 as the general base. The Arg32 binding and accompanying structural change of EarP may induce a change in the rhamnose-ring conformation suitable for the reaction.


Assuntos
Arginina/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ramnose/química , Cristalografia por Raios X , Dissulfetos , Escherichia coli/metabolismo , Glicosilação , Cinética , Mutação , Neisseria meningitidis/metabolismo , Açúcares de Nucleosídeo Difosfato , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Nucleotídeos de Timina
7.
Methods Mol Biol ; 1728: 49-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404990

RESUMO

Cell-free protein synthesis (CFPS) is an effective method for the site-specific incorporations of noncanonical amino acids (ncAAs) into proteins. The nature of in vitro synthesis enables the use of experimental conditions that are toxic or reduce cellular uptake during in vivo site-specific incorporations of ncAAs. Using the Escherichia coli cell extract (S30) from the highly reproductive RF-1 deletion strains, B-60.∆A::Z and B-95.∆A, with orthogonal tRNA and aminoacyl-tRNA synthetase (aaRS) pairs from Methanosarcina mazei, we have developed CFPS methods for the highly productive and efficient multiple incorporation of ncAAs. In this chapter, we describe our methods for the preparation of the S30 and the orthogonal tRNAPyl and PylRS pair, and two CFPS protocols for ncAA incorporation.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , Aminoacil-tRNA Sintetases/metabolismo , Extratos Celulares , RNA de Transferência/metabolismo
8.
Bioconjug Chem ; 28(8): 2099-2108, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28727448

RESUMO

The site-specific chemical conjugation of proteins, following synthesis with an expanded genetic code, promises to advance antibody-based technologies, including antibody drug conjugation and the creation of bispecific Fab dimers. The incorporation of non-natural amino acids into antibodies not only guarantees site specificity but also allows the use of bio-orthogonal chemistry. However, the efficiency of amino acid incorporation fluctuates significantly among different sites, thereby hampering the identification of useful conjugation sites. In this study, we applied the codon reassignment technology to achieve the robust and efficient synthesis of chemically functionalized antibodies containing Nε-(o-azidobenzyloxycarbonyl)-l-lysine (o-Az-Z-Lys) at defined positions. This lysine derivative has a bio-orthogonally reactive group at the end of a long side chain, enabling identification of multiple new positions in Fab-constant domains, allowing chemical conjugation with high efficiency. An X-ray crystallographic study of a Fab variant with o-Az-Z-Lys revealed high-level exposure of the azido group to solvent, with six of the identified positions subsequently used to engineer "Variabodies", a novel antibody format allowing various connections between two Fab molecules. Our findings indicated that some of the created Variabodies exhibited agonistic activity in cultured cells as opposed to the antagonistic nature of antibodies. These results showed that our approach greatly enhanced the availability of antibodies for chemical conjugation and might aid in the development of new therapeutic antibodies.


Assuntos
Anticorpos/química , Anticorpos/genética , Código Genético , Azidas/química , Linhagem Celular Tumoral , Química Click , Códon/genética , Escherichia coli/genética , Humanos , Lisina/química , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Trastuzumab/química , Trastuzumab/genética
9.
PLoS One ; 11(2): e0147907, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840407

RESUMO

Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational ß-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The ß-lysyl EF-P modification pathway is conserved among only 26-28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl-EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli ß-lysyl-EF-P. The possible reasons for the unique requirement of rhamnosyl-EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others.


Assuntos
Arginina/metabolismo , Domínio Catalítico/genética , Viabilidade Microbiana/genética , Neisseria meningitidis/fisiologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Sequência de Aminoácidos , Antibacterianos/farmacologia , Arginina/química , Evolução Biológica , Deleção de Genes , Genoma Bacteriano , Glicosilação , Humanos , Dados de Sequência Molecular , Neisseria meningitidis/efeitos dos fármacos , Fatores de Alongamento de Peptídeos/química , Prolina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ramnose/metabolismo , Ribossomos/metabolismo , Espectrometria de Massas em Tandem
10.
Bioconjug Chem ; 27(1): 198-206, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26625213

RESUMO

Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.


Assuntos
Aminoácidos/química , Bioquímica/métodos , Proteínas/química , Anticorpos de Domínio Único/química , Anticorpos/química , Azidas/química , Receptores ErbB/química , Receptores ErbB/imunologia , Corantes Fluorescentes/química , Methanosarcina/enzimologia , Polietilenoglicóis/química , Ressonância de Plasmônio de Superfície
11.
Nucleic Acids Res ; 43(16): 8111-22, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240376

RESUMO

The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to L-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize L-homoarginine and L-N(6)-(1-iminoethyl)lysine (L-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNA(Pyl) CCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to L-homoarginine or L-NIL. The assignment of AGG to L-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.


Assuntos
Códon , Escherichia coli/genética , Homoarginina/metabolismo , Biossíntese de Proteínas , Aminoácidos/análise , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Arginina/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Genes Bacterianos , Genes Essenciais , Homoarginina/química , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Engenharia de Proteínas , Proteoma/metabolismo , RNA de Transferência/metabolismo , Supressão Genética
12.
Infect Immun ; 83(9): 3555-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099588

RESUMO

We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular L-glutamate via the GltT-GltM L-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(-S)]. The alleviation disappeared again in AM(-S) supplemented with 500 µM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the L-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais/microbiologia , Ácido Glutâmico/metabolismo , Neisseria meningitidis/patogenicidade , Infecções por Neisseriaceae/metabolismo , Western Blotting , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Neisseria meningitidis/metabolismo
13.
J Struct Funct Genomics ; 16(1): 25-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618148

RESUMO

The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 µM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).


Assuntos
Proteínas Arqueais/química , Guanosina Trifosfato/química , Methanosarcina/química , RNA de Transferência de Cisteína/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Calorimetria , Cristalografia por Raios X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/química , Guanilil Imidodifosfato/metabolismo , Cinética , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Cisteína/metabolismo , Homologia de Sequência de Aminoácidos
15.
Chembiochem ; 15(12): 1830-8, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25067793

RESUMO

Lysine methylation is one of the important post-translational modifications of histones, and produces an N(ε) -mono-, di-, or trimethyllysine residues. Multiple and site-specific lysine methylations of histones are essential to define epigenetic statuses and control heterochromatin formation, DNA repair, and transcription regulation. A method was previously developed to build an analogue of N(ε)-monomethyllysine, with cysteine substituting for lysine. Here, we have developed a new method of preparing histones bearing multiple N(ε)-monomethyllysine residues at specified positions. Release factor 1-knockout (RFzero) Escherichia coli cells or a cell-free system based on the RFzero cell lysate was used for protein synthesis, as in RFzero cells UAG is redefined as a sense codon for non-canonical amino acids. During protein synthesis, a tert-butyloxycarbonyl-protected N(ε)-monomethyllysine analogue is ligated to Methanosarcina mazei pyrrolysine tRNA (tRNA(Pyl)) by M. mazei pyrrolysyl-tRNA synthetase mutants, and is translationally incorporated into one or more positions specified by the UAG codon. Protecting groups on the protein are then removed with trifluoroacetic acid to generate N(ε)-monomethyllysine residues. We installed N(ε)-monomethyllysine residues at positions 4, 9, 27, 36, and/or 79 of human histone H3. Each of the N(ε)-monomethyllysine residues within the produced histone H3 was recognized by its specific antibody. Furthermore, the antibody recognized the authentic N(ε)-monomethyllysine residue at position 27 better than the N(ε)-monomethyllysine analogue built with cysteine. Mass spectrometry analyses also confirmed the lysine modifications on the produced histone H3. Thus, our method enables the installation of authentic N(ε)-monomethyllysines at multiple positions within a protein for large-scale production.


Assuntos
Escherichia coli/citologia , Escherichia coli/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Biossíntese de Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Sistema Livre de Células , Código Genético/genética , Humanos , Lisina/química , Modelos Moleculares , Estrutura Molecular
16.
J Struct Funct Genomics ; 15(3): 173-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24894648

RESUMO

The N (1)-methyladenosine residue at position 58 of tRNA is found in the three domains of life, and contributes to the stability of the three-dimensional L-shaped tRNA structure. In thermophilic bacteria, this modification is important for thermal adaptation, and is catalyzed by the tRNA m(1)A58 methyltransferase TrmI, using S-adenosyl-L-methionine (AdoMet) as the methyl donor. We present the 2.2 Å crystal structure of TrmI from the extremely thermophilic bacterium Aquifex aeolicus, in complex with AdoMet. There are four molecules per asymmetric unit, and they form a tetramer. Based on a comparison of the AdoMet binding mode of A. aeolicus TrmI to those of the Thermus thermophilus and Pyrococcus abyssi TrmIs, we discuss their similarities and differences. Although the binding modes to the N6 amino group of the adenine moiety of AdoMet are similar, using the side chains of acidic residues as well as hydrogen bonds, the positions of the amino acid residues involved in binding are diverse among the TrmIs from A. aeolicus, T. thermophilus, and P. abyssi.


Assuntos
Aquifoliaceae/enzimologia , Complexos Multiproteicos/ultraestrutura , S-Adenosilmetionina/química , tRNA Metiltransferases/química , tRNA Metiltransferases/ultraestrutura , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Dados de Sequência Molecular , Ligação Proteica , Pyrococcus abyssi/enzimologia , Alinhamento de Sequência , Thermus thermophilus/enzimologia
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 5-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23275158

RESUMO

Structures of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) have been determined in a novel crystal form. The triclinic form crystals contained two PylRS dimers (four monomer molecules) in the asymmetric unit, in which the two subunits in one dimer each bind N(ℇ)-(tert-butyloxycarbonyl)-L-lysyladenylate (BocLys-AMP) and the two subunits in the other dimer each bind AMP. The BocLys-AMP molecules adopt a curved conformation and the C(α) position of BocLys-AMP protrudes from the active site. The ß7-ß8 hairpin structures in the four PylRS molecules represent distinct conformations of different states of the aminoacyl-tRNA synthesis reaction. Tyr384, at the tip of the ß7-ß8 hairpin, moves from the edge to the inside of the active-site pocket and adopts multiple conformations in each state. Furthermore, a new crystal structure of the BocLys-AMPPNP-bound form is also reported. The bound BocLys adopts an unusually bent conformation, which differs from the previously reported structure. It is suggested that the present BocLys-AMPPNP-bound, BocLys-AMP-bound and AMP-bound complexes represent the initial binding of an amino acid (or pre-aminoacyl-AMP synthesis), pre-aminoacyl-tRNA synthesis and post-aminoacyl-tRNA synthesis states, respectively. The conformational changes of Asn346 that accompany the aminoacyl-tRNA synthesis reaction have been captured by X-ray crystallographic analyses. The orientation of the Asn346 side chain, which hydrogen-bonds to the carbonyl group of the amino-acid substrate, shifts by a maximum of 85-90° around the C(ß) atom.


Assuntos
Aminoacil-tRNA Sintetases/química , Asparagina/química , Domínio Catalítico , Methanosarcina/enzimologia , Motivos de Aminoácidos , Aminoacil-tRNA Sintetases/síntese química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Asparagina/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Lisina/análogos & derivados , Lisina/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
18.
Infect Immun ; 80(12): 4154-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22988016

RESUMO

The type IV pilus of Neisseria meningitidis is the major factor for meningococcal adhesion to host cells. In this study, we showed that a mutant of N. meningitidis pilV, a minor pilin protein, internalized less efficiently to human endothelial and epithelial cells than the wild-type strain. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry analyses showed that PilE, the major subunit of pili, was less glycosylated at its serine 62 residue (Ser62) in the ΔpilV mutant than in the pilV(+) strain, whereas phosphoglycerol at PilE Ser93 and phosphocholine at PilE Ser67 were not changed. Introduction of the pglL mutation, which results in complete loss of O-linked glycosylation from Ser62, slightly reduced N. meningitidis internalization into human brain microvascular endothelial cells, whereas the addition of the ΔpilV mutation greatly reduced N. meningitidis internalization. The accumulation of ezrin, which is part of the cytoskeleton ERM family, was observed with pilV(+), ΔpglL, and pilE(S62A) strains but not with the ΔpilV mutant. These results suggested that whereas N. meningitidis pilin originally had an adhesive activity that was less affected by minor pilin proteins, the invasive function evolved with incorporation of the PilV protein into the pili to promote the N. meningitidis internalization into human cells.


Assuntos
Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , Neisseria meningitidis/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Humanos , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/genética
19.
Mol Biosyst ; 8(4): 1131-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22294092

RESUMO

A derivative of N(ε)-benzyloxycarbonyl-L-lysine with a photo-reactive diazirinyl group, N(ε)-[((4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzyl)oxy)carbonyl]-L-lysine, was site-specifically incorporated into target proteins in mammalian cells. The incorporated photo-crosslinker is able to react not only with residues as distant as about 15 Šbut also with those in closer proximity, thus enabling "wide-range" photo-crosslinking of proteins.


Assuntos
Azirinas/química , Lisina/análogos & derivados , Fenilalanina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzofenonas/química , Células CHO , Cricetinae , Reagentes de Ligações Cruzadas , Células HEK293 , Humanos , Lisina/química , Fenilalanina/química , Conformação Proteica
20.
Biochem Biophys Res Commun ; 411(4): 757-61, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21782790

RESUMO

The genetic encoding of synthetic or "non-natural" amino acids promises to diversify the functions and structures of proteins. We applied rapid codon-reassignment for creating Escherichia coli strains unable to terminate translation at the UAG "stop" triplet, but efficiently decoding it as various tyrosine and lysine derivatives. This complete change in the UAG meaning enabled protein synthesis with these non-natural molecules at multiple defined sites, in addition to the 20 canonical amino acids. UAG was also redefined in the E. coli BL21 strain, suitable for the large-scale production of recombinant proteins, and its cell extract served the cell-free synthesis of an epigenetic protein, histone H4, fully acetylated at four specific lysine sites.


Assuntos
Aminoácidos/genética , Evolução Molecular Direcionada/métodos , Código Genético , Biossíntese de Proteínas/genética , Aminoácidos/química , Códon de Terminação/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Técnicas de Inativação de Genes , Histonas/genética , Histonas/metabolismo , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/genética , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...