Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 44860, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322258

RESUMO

On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

2.
Rapid Commun Mass Spectrom ; 29(9): 891-900, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377018

RESUMO

RATIONALE: The oxygen exchange fraction between soil H(2)O and N(2)O precursors differs in soils depending on the responsible N(2)O-producing process: nitrification or denitrification. This study investigated the O-exchange between soil H(2)O and N(2)O precursors in a green tea field with high N(2)O emissions. METHODS: The rainwater δ(18)O value was measured using cavity ring-down spectrometry (CRDS) and compared with that of soil water collected under the tea plant canopy and between tea plant rows. The intramolecular (15)N site preference in (ß) N(α) NO (SP = δ(15)N(α) - δ(15)N(ß)) was determined after measuring the δ(15)N(α) and δ(15)N(bulk) values using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the δ(18) O values of N(2)O and NO(3)(-) were also measured using GC/IRMS. RESULTS: The range of δ(18)O values of rainwater (-11.15‰ to -4.91‰) was wider than that of soil water (-7.94‰ to -5.64‰). The δ(18)O value of soil water at 50 cm depth was not immediately affected by rainwater. At 10 cm and 20 cm depths of soil between tea plant rows, linear regression analyses of δ(18)O-N(2)O (relative to δ(18)O-NO(3)(-)) versus δ(18) O-H(2)O (relative to δ(18)O-NO(3)(-)) yielded slopes of 0.76-0.80 and intercepts of 31-35‰. CONCLUSIONS: In soil between tea plant rows, the fraction of O-exchange between H(2)O and N(2)O precursors was approximately 80%. Assuming that denitrification dominated N(2)O production, the net (18)O-isotope effect for denitrification (NO(3)(-) reduction to N(2)O) was approximately 31-35‰, reflecting the upland condition of the tea field.


Assuntos
Camellia sinensis/química , Nitratos/química , Isótopos de Oxigênio/análise , Chuva/química , Solo/química , Água/química , Agricultura , Camellia sinensis/metabolismo , Desnitrificação , Japão , Espectrometria de Massas , Nitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...