Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234747

RESUMO

Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound's odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.


Assuntos
Vitis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pirazinas/análise , Microextração em Fase Sólida/métodos , Vitis/química
2.
Phys Chem Chem Phys ; 17(15): 10209-17, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796991

RESUMO

This study highlights the effect of the aggregate state of a reactant on the reaction kinetics under the conditions of nanoconfinement. Our previous work (Phys. Chem. Chem. Phys., 2014, 16, 11409) has demonstrated considerable deceleration of the solid state trimerization of sodium dicyanamide in organically modified silica nanopores. In the present study we use FTIR, NMR, pXRD, TGA and DSC to analyze the kinetics and mechanism of the liquid state trimerization of potassium and rubidium dicyanamide under similar conditions of nanoconfinement. It is found that nanoconfinement accelerates dramatically the kinetics of the liquid state trimerization, whereas it does not appear to affect the reaction mechanism. Kinetic analysis indicates that the acceleration is associated with an increase in the preexponential factor. Although nanoconfinement has the opposite effects on the respective kinetics of solid and liquid state trimerization, both effects are linked to a change in the preexponential factor. The results obtained are consistent with our hypothesis that the effects differ because nanoconfinement may promote disordering of the solid and ordering of the liquid reaction media.

3.
J Phys Chem B ; 118(45): 13002-10, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25313939

RESUMO

We have synthesized several copolymers of methyl polyethylene glycol siloxane (MePEG7SiO3)m and methyl polypropylene glycol siloxane (MePPGnSiO3)m as hydrogen ion (H(+)) conducting polymer electrolytes. These copolymers were prepared by a sol-gel polymerization of mixtures of the MePEG and MePPG monomers. We synthesized these H(+) conducting polymer electrolytes in order to study the relationship between observed ionic conductivity and structural properties such as viscosity, fractional free volume, and volume fraction of ether. We found that viscosity increased as the fraction of the smaller comonomer increased. For the MePPG2/MePPG3 copolymer, an increase in fractional free volume increased the fluidity. The heterogeneous copolymers (PEG/PPG copolymers) obeyed the Doolittle equation, while the homogeneous (PEG/PEG and PPG/PPG) copolymers did not. The increase of FFV did not, however, correspond to an increase in conductivity, as would have been predicted by the Forsythe equation. The conductivity data did correspond to a modified Forsythe equation substituting Volume Fraction of Ether (V(f,ether)) for FFV. We conclude that the proton conductivity of MePEG copolymers is more dependent on the volume fraction of ether than on the fractional free volume.

4.
Phys Chem Chem Phys ; 16(23): 11409-16, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24798065

RESUMO

Research on nanoconfined chemical reactions has the potential of discovering novel means for controlling chemical reactivity which is a task of great fundamental and practical significance. This study is the first attempt to probe the effect of nanoconfinement on the kinetics and mechanism of reactions that occur entirely in the solid state. FTIR, NMR, pXRD, TGA and DSC were employed to analyze the thermally initiated trimerization of sodium dicyanamide in bulk and organically modified nanopores. Nanoconfinement did not cause apparent changes in the net reaction mechanism but decelerated the reaction kinetics dramatically. Kinetic analysis linked the deceleration to a dramatic decrease in the preexponential factor. This is an original effect which is especially noteworthy considering that for nanoconfined liquid state reactions the effect is opposite: significant acceleration due to an increase in the preexponential factor. We propose that the difference arises respectively from disordering of the solid reaction media compared to ordering of the liquid reaction media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...