Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 21(11): 1290-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280703

RESUMO

Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.


Assuntos
Nanopartículas Metálicas , Platina , Temperatura , Vapor , Óxido de Alumínio
2.
ACS Nano ; 16(4): 6334-6348, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377139

RESUMO

The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.

3.
ChemistryOpen ; 11(2): e202100295, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35112803

RESUMO

Integration of metal-organic frameworks (MOFs) as components of advanced electronic devices is at a very early phase of development and the fundamental issues related to their crystal growth on conductive substrate need to be addressed. Herein, we report on the structural characterization of a newly synthesized Sr-based MOF {[Sr(2,5-Pzdc)(H2 O)2 ] ⋅ 3 H2 O}n (1) and the uniform crystal growth of compound 1 on a conducting glass (fluorine doped tin oxide (FTO)) substrate using electrochemical deposition techniques. The Sr-based MOF 1 was synthesized by the reaction of Sr(NO3 )2 with 2,5-pyrazinedicarboxylic acid dihydrate (2,5-Pzdc) under solvothermal conditions. A single-crystal X-ray diffraction analysis revealed that 1 has a 3D structure and crystallizes in the triclinic P 1 ‾ space group. In addition, the uniform crystal growth of this MOF on a conducting glass (FTO) substrate was successfully achieved using electrochemical deposition techniques. Only a handful of MOFs have been reposed to grown on conductive surfaces, which makes this study an important focal point for future research on the applications of MOF-based devices in microelectronics.

4.
J Am Chem Soc ; 144(4): 1612-1621, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050603

RESUMO

Low-temperature removal of noxious environmental emissions plays a critical role in minimizing the harmful effects of hydrocarbon fuels. Emission-control catalysts typically consist of large quantities of rare, noble metals (e.g., platinum and palladium), which are expensive and environmentally damaging metals to extract. Alloying with cheaper base metals offers the potential to boost catalytic activity while optimizing the use of noble metals. In this work, we show that PtxCu100-x catalysts prepared from colloidal nanocrystals are more active than the corresponding Pt catalysts for complete propene oxidation. By carefully controlling their composition while maintaining nanocrystal size, alloys with dilute Cu concentrations (15-30% atomic fraction) demonstrate promoted activity compared to pure Pt. Complete propene oxidation was observed at temperatures as low as 150 °C in the presence of steam, and five to ten times higher turnover frequencies were found compared to monometallic Pt catalysts. Through DFT studies and structural and catalytic characterization, the remarkable activity of dilute PtxCu100-x alloys was related to the tuning of the electronic structure of Pt to reach optimal binding energies of C* and O* intermediates. This work provides a general approach toward investigation of structure-property relationships of alloyed catalysts with efficient and optimized use of noble metals.

5.
Angew Chem Int Ed Engl ; 60(14): 7971-7979, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403788

RESUMO

Monodispersed metal and semiconductor nanocrystals have attracted great attention in fundamental and applied research due to their tunable size, morphology, and well-defined chemical composition. Utilizing these nanocrystals in a controllable way is highly desirable especially when using them as building blocks for the preparation of nanostructured materials. Their deposition onto oxide materials provide them with wide applicability in many areas, including catalysis. However, so far deposition methods are limited and do not provide control to achieve high particle loadings. This study demonstrates a general approach for the deposition of hydrophobic ligand-stabilized nanocrystals on hydrophilic oxide supports without ligand-exchange. Surface functionalization of the supports with primary amine groups either using an organosilane ((3-aminopropyl)trimethoxysilane) or bonding with aminoalcohols (3-amino-1,2-propanediol) were found to significantly improve the interaction between nanocrystals and supports achieving high loadings (>10 wt. %). The bonding method with aminoalcohols guarantees the opportunity to remove the binding molecules thus allowing clean metal/oxide materials to be obtained, which is of great importance in the preparation of supported nanocrystals for heterogeneous catalysis.

6.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554500

RESUMO

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

7.
J Phys Chem B ; 122(1): 380-391, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29193972

RESUMO

The properties of (synthesized) single-walled aluminosilicate nanotube (AlSiNT; light-scattering characterized length ∼2000 ± 230 nm and diameter ∼35 ± 4 nm) dispersed in an aqueous poly(vinyl alcohol) (PVA) solution (10 wt %) are systematically explored using a comprehensive combination of (polarized/depolarized) dynamic light scattering, rheological, rheo-optical, and scanning electron microscopy analysis schemes. The nanotube/polymer dispersions under investigation are promising for their fair nanotube dispersion in pristine aqueous media (e.g., without salt or acid addition), as well as for the optical transparency that greatly facilitates systematic exploration of structural features and dispersion state that are practically inaccessible for many of their (opaque) companions such as carbon nanotube dispersions. We provide the first in-depth analysis revealing excellent dispersion state of (unmodified) AlSiNT in the PVA matrix, giving rise to (critical) gel-like features and substantially promoted elasticity that can be utilized, as a practical assessment, to produce uniform and defect-free electrospun nanofibers. Additionally, there is unambiguous evidence of nematic liquid crystal-like "wagging" (strain-invariant, periodic oscillation) under steady shear flow, a phenomenon previously unreported for nanotube composite materials. Overall, the present findings suggest that AlSiNT/PVA dispersions possess promising rheological, optical, and electrospinning properties that are highly desirable for current nanotechnological applications, and may serve as an ideal model system for establishing structure-performance relationships for like nanotube/polymer composite materials.

8.
Nanoscale ; 8(40): 17427-17432, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722401

RESUMO

Nanotube-based ultra-low-k thin films with high Young's modulus composed of single-walled aluminosilicate nanotubes (AlSiNTs) and a trace amount of poly(vinyl alcohol) (PVA) have been developed. The dehydrated AlSiNT film possesses a relative permittivity of 1.05, and a Young's modulus of 25 GPa, which exceed those of most existing ultra-low-k materials.

9.
Phys Chem Chem Phys ; 18(30): 20371-80, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27401818

RESUMO

This paper reports on the fabrication of low-k (amorphous) silica thin films cast from solutions without and with two different types of surfactants (TWEEN® 80 and Triton™ X-100) to elucidate the relationships between the structural/morphological features of the casting solutions and the physical properties of the resulting thin films. Cryogenic transmission microscopy (cryo-TEM), static/dynamic light scattering (SLS/DLS), and small-angle X-ray scattering (SAXS) revealed contrasting colloidal dispersion states and phase behavior among the three casting solutions. Casting solution with the Triton™ X-100 surfactant produced stable (>90 days) nanoparticles with good dispersion in solution (mean particle size ∼10 nm) as well as good mesopore volume (characterized by nitrogen physisorption) in powder and thin films of high mechanical strength (characterized by the nanoindentation test). The longer main chain and bulkier side units of the TWEEN® 80 surfactant led to stable micelle-nanoparticle coexisting dispersion, which resulted in the highest mesopore volume in powder and thin films with the lowest dielectric constant (∼3) among the samples in this study. The casting solution without the surfactant failed to produce a stabilized solution or thin films of acceptable uniformity. These findings demonstrate the possibility of fine-tuning low-k silica film properties by controlling the colloidal state of casting solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...