Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 129: 111597, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38295543

RESUMO

Neutrophils are the most important innate immune cells in host defense against methicillin-resistant Staphylococcus aureus (MRSA). However, MRSA orchestrates precise and timely expression of a series of virulence factors, especially the chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS), to evade neutrophil-mediated host defenses. Here, we demonstrated that tripterin, a plant-derived bioactive pentacyclic triterpenoid, had a low minimum inhibitory concentration (MIC) of 1.28 µg/mL and displayed excellent anti-MRSA activity in vitro and in vivo. RNA-seq and further knockdown experiments revealed that tripterin could dramatically downregulate the expression of CHIPS by regulating the SaeRS two-component regulatory system, thereby enhancing the chemotactic response of neutrophils. Furthermore, tripterin also displayed a potential inhibitory effect on biofilm components to enhance neutrophil infiltration into the interior of the biofilm. In a mouse bacteremia model, tripterin could still maintain an excellent therapeutic effect that was significantly better than that of the traditional antibiotic vancomycin. Overall, these results suggest that tripterin possesses a superior antibacterial activity via breaking CHIPS-mediated immune evasion to promote neutrophil chemotaxis, thus providing a novel strategy for combating serious pathogenic infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Neutrófilos , Quimiotaxia , Evasão da Resposta Imune , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
J Mol Med (Berl) ; 101(6): 699-716, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129620

RESUMO

Drug-induced liver injury (DILI) is a major concern in clinical treatment as well as postmarketing surveillance, showing an urgent requirement for the development of protective medications. Celastrol (Cel), a highly active natural product extracted from the roots of Tripterygium wilfordii, has a potential liver protective activity due to its antioxidant and anti-inflammatory effects. However, the further application of Cel to DILI remains a challenge because of its short half-life, low solubility, and toxic side effects. Herein, we developed a Cel-loaded biomimetic nanodrug based on erythrocyte membrane vesicles (EMV) for protecting the liver from acetaminophen (APAP)-induced liver injury. The Cel-loaded EMV (C-EMV) with lower cytotoxicity had a well-sustained release effect and exhibited excellent ability for liver accumulation under physiological and pathological conditions. By suppressing the inflammatory response of pro-inflammatory macrophage M1 polarization while stimulating anti-inflammatory macrophage M2 polarization, C-EMV could significantly alleviate the primary pathological manifestations related to liver injury, including aberrant elevation of biochemical indicators, histopathological alterations, neutrophil infiltration as well as hepatocyte DNA fragmentation. The macrophage depletion experiment further demonstrated that the protective effect of C-EMV on APAP-induced liver injury appeared to be dependent on hepatic macrophages. Therefore, C-EMV as a biomimetic nanodrug exhibits great potential for attenuating the progress of DILI, providing a new approach to protecting the liver from DILI as well as other liver inflammatory diseases through a targeted nanodelivery system. KEY MESSAGES: EMV biomimetic nanocarrier has good monodispersity and sustained-release property. EMV biomimetic nanocarrier displays excellent liver-targeting capability under physiological and pathological conditions. C-EMV biomimetic nanodrug with lower cytotoxicity regulates macrophage polarization in vitro and in vivo. C-EMV biomimetic nanodrug can significantly alleviate APAP-induced liver injury. The protective effect of C-EMV on APAP-induced liver injury is dependent on hepatic macrophages.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Nanopartículas , Humanos , Animais , Camundongos , Acetaminofen/efeitos adversos , Biomimética , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Macrófagos , Nanopartículas/uso terapêutico , Camundongos Endogâmicos C57BL
3.
J Nanobiotechnology ; 21(1): 13, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639772

RESUMO

Macrophage polarization determines the production of cytokines that fuel the initiation and evolution of rheumatoid arthritis (RA). Thus, modulation of macrophage polarization might represent a potential therapeutic strategy for RA. However, coordinated modulation of macrophages in the synovium and synovial fluid has not been achieved thus far. Herein, we develop a biomimetic ApoA-I mimetic peptide-modified neutrophil membrane-wrapped F127 polymer (R4F-NM@F127) for targeted drug delivery during RA treatment. Due to the high expression of adhesion molecules and chemokine receptors on neutrophils, the neutrophil membrane coating can endow the nanocarrier with synovitis-targeting ability, with subsequent recruitment to the synovial fluid under the chemotactic effects of IL-8. Moreover, R4F peptide modification further endows the nanocarrier with the ability to target the SR-B1 receptor, which is highly expressed on macrophages in the synovium and synovial fluid. Long-term in vivo imaging shows that R4F-NM@F127 preferentially accumulates in inflamed joints and is engulfed by macrophages. After loading of the anti-inflammatory drug celastrol (Cel), R4F-NM@F127-Cel shows a significant reduction in hepatotoxicity, and effectively inhibits synovial inflammation and alleviates joint damage by reprogramming macrophage polarization. Thus, our results highlight the potential of the coordinated targeted modulation of macrophages as a promising therapeutic option for the treatment of RA.


Assuntos
Artrite Reumatoide , Nanopartículas , Humanos , Neutrófilos/metabolismo , Biomimética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas , Nanopartículas/uso terapêutico
4.
Front Cell Dev Biol ; 8: 602731, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363159

RESUMO

Circular RNAs (circRNAs) are regarded as pivotal regulators in bone metabolism. However, the role of circRNAs in osteoblast mineralization remains largely unknown. Herein, we explored the expression profiles of circRNAs in 4 groups of osteoblasts with varying mineralization processes. Hsa_circ_0008500 (circ8500), which is upregulated in the RNA-seq data, is sifted through 194 candidate circRNAs in osteoblasts during mineralization. We characterize the features of novel circRNAs and find that the elevated expression of circ8500 promotes osteoblast mineralization. Mechanistically, circ8500 contains a critical binding site for miR-1301-3p. We further show that circ8500 competitively binds miR-1301-3p to abolish its suppressive effect on peptidyl arginine deiminase 4 (PADI4). PADI4 works as a binding partner of RUNX2 and stabilizes its protein expression levels by inhibiting the ubiquitin-proteasome pathway. This work provides new insights on the circRNA patterns in osteoblasts and the role of PADI4 in matrix mineralization.

5.
Acta Biochim Biophys Sin (Shanghai) ; 52(5): 563-569, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32318696

RESUMO

Osteoblast differentiation is a key process in bone homeostasis. Mutations in plastin 3 have been reported to be responsible for X-linked osteoporosis. Plastin 3 and plastin 2 act synergistically to regulate osteoblast differentiation. However, the bone-related function of plastin 1, another family member of plastins, has not been assessed. In this study, we addressed the functional importance of plastin 1 in osteoblasts. We characterized the expression patterns of plastin 1 during osteoblast differentiation and revealed its important role in this process. In both HEK 293T and hFOB1.19 cells, plastin 1 was demonstrated to regulate intracellular Ca2+. Accordingly, we revealed that higher Ca2+ concentration promotes osteoblast differentiation. Finally, we found that plastin 1 may play a compensatory role in osteoporosis patients with plastin 3 deficiency. Together, our results indicate that plastin 1 promotes osteoblast differentiation by regulating intracellular Ca2+. Our work sheds new light on the role played by plastins in bone homeostasis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Diferenciação Celular , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Osteoblastos/metabolismo , Osteoporose/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Osteoblastos/patologia , Osteoporose/genética , Osteoporose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...