Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 842: 156828, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760181

RESUMO

The BiOCl0.75I0.25/g-C3N4 nanosheet (BCI-CN) was successfully immobilized on polyolefin polyester fiber (PPF) through the hydrothermal method. The novel immobilized BiOCl0.75I0.25/g-C3N4 nanocomposites (BCI-CN-PPF) were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy EDS, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS) to confirm that BCI-CN was successfully immobilized on PPF with abundant oxygen vacancies reserved. Under simulated solar light irradiation, 100 % of bisphenol A (BPA) with an initial concentration of 10 mg·L-1 was degraded by BCI-CN-PPF (0.2 g·L-1 of BCI-CN immobilized) after 60 min. A similar photocatalytic efficiency of BPA was obtained in the presence of effluent organic matter (EfOM). The photocatalytic degradation of BPA was not affected by EfOM <5 mg-C/L. In comparison, the photocatalytic performance was considerably inhibited by EfOM with a concentration of 10 mg-C/L. Furthermore, photogenerated holes and superoxide radicals predominated in the photocatalytic degradation processes of BPA. The total organic carbon (TOC) removal efficiencies of BPA and EfOM were 75.2 % and 50 % in the BCI-CN-PPF catalytic system. The BPA removal efficiency of 94.9 % was still achieved in the eighth cycle of repeated use. This study provides a promising immobilized nanocomposite with high photocatalytic activity and excellent recyclability and reusability for practical application in wastewater treatment.


Assuntos
Luz , Nanocompostos , Compostos Benzidrílicos/química , Catálise , Nanocompostos/química , Fenóis/química
2.
Sci Total Environ ; 810: 152236, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896137

RESUMO

A novel strain FDN-02 was isolated from a sequencing batch biofilm reactor. FDN-02 was identified as Paracoccus sp., and the Genbank Sequence_ID was MW652628. Comparing with the removal efficiency of ammonia nitrogen (NH4+-N) by bacterium FDN-02 under different growth conditions, the optimal initial pH, carbon source, and C/N ratio were 7.0, sucrose, and 16, respectively. The maximum removal efficiency and rate of NH4+-N were respectively 96.2% and 10.06 mg-N/L/h within 8 h under anoxic condition when the concentration of NH4+-N was 44.87 mg/L. Specifically, 71.9% of NH4+-N was utilized by strain FDN-02 through heterotrophic assimilation to synthetize organic nitrogen, and approximately 24.1% of NH4+-N was lost in the form of gaseous nitrogen without the emission of nitrous oxide. Bacterium FDN-02 was also found to be a denitrifying organism, and nitrate nitrogen and nitrite nitrogen of lower concentrations were removed by denitrification after the enlargement of biomass. Further investigation showed that the biomass after the removal of NH4+-N by strain FDN-02 had resource utilization potential, and the contents of proteins and amino acids were 635 and 192.97 mg/g, respectively, especially for the usage as an alternative nutrient source for livestock and organic fertilizers. This study provided a promising environmentally friendly biological treatment method for the removal of NH4+-N in the wastewater.


Assuntos
Amônia , Paracoccus , Aerobiose , Desnitrificação , Processos Heterotróficos , Nitrificação , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...