Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38838674

RESUMO

Numerous variants, including both single-nucleotide variants (SNVs) in DNA and A>G RNA edits in mRNA as essential drivers of cellular proliferation and tumorigenesis, are commonly associated with cancer progression and growth. Thus, mining and summarizing single-cell variants will provide a refined and higher-resolution view of cancer and further contribute to precision medicine. Here, we established a database, CanCellVar, which aims to provide and visualize the comprehensive atlas of single-cell variants in tumor microenvironment. The current CanCellVar identified ∼3 million variants (∼1.4 million SNVs and ∼1.4 million A>G RNA edits) involved in 2,754,531 cells of 5 major cell types across 37 cancer types. CanCellVar provides the basic annotation information as well as cellular and molecular function properties of variants. In addition, the clinical relevance of variants can be obtained including tumor grade, treatment, metastasis, and others. Several flexible tools were also developed to aid retrieval and to analyze cell-cell interactions, gene expression, cell-development trajectories, regulation, and molecular structure affected by variants. Collectively, CanCellVar will serve as a valuable resource for investigating the functions and characteristics of single-cell variations and their roles in human tumor evolution and treatment.

2.
iScience ; 27(2): 108947, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322990

RESUMO

The typical genomic feature of acute myeloid leukemia (AML) M3 subtype is the fusion event of PML/RARα, and ATRA/ATO-based combination therapy is current standard treatment regimen for M3 subtype. Here, a machine-learning model based on expressions of PML/RARα targets was developed to identify M3 patients by analyzing 1228 AML patients. Our model exhibited high accuracy. To enable more non-M3 AML patients to potentially benefit from ATRA/ATO therapy, M3-like patients were further identified. We found that M3-like patients had strong GMP features, including the expression patterns of M3 subtype marker genes, the proportion of myeloid progenitor cells, and deconvolution of AML constituent cell populations. M3-like patients exhibited distinct genomic features, low immune activity and better clinical survival. The initiative identification of patients similar to M3 subtype may help to identify more patients that would benefit from ATO/ATRA treatment and deepen our understanding of the molecular mechanism of AML pathogenesis.

3.
Nucleic Acids Res ; 52(D1): D1429-D1437, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37811897

RESUMO

The interactions between tumor cells and the microenvironment play pivotal roles in the initiation, progression and metastasis of cancer. The advent of spatial transcriptomics data offers an opportunity to unravel the intricate dynamics of cellular states and cell-cell interactions in cancer. Herein, we have developed an integrated spatial omics resource in cancer (SORC, http://bio-bigdata.hrbmu.edu.cn/SORC), which interactively visualizes and analyzes the spatial transcriptomics data in cancer. We manually curated currently available spatial transcriptomics datasets for 17 types of cancer, comprising 722 899 spots across 269 slices. Furthermore, we matched reference single-cell RNA sequencing data in the majority of spatial transcriptomics datasets, involving 334 379 cells and 46 distinct cell types. SORC offers five major analytical modules that address the primary requirements of spatial transcriptomics analysis, including slice annotation, identification of spatially variable genes, co-occurrence of immune cells and tumor cells, functional analysis and cell-cell communications. All these spatial transcriptomics data and in-depth analyses have been integrated into easy-to-browse and explore pages, visualized through intuitive tables and various image formats. In summary, SORC serves as a valuable resource for providing an unprecedented spatially resolved cellular map of cancer and identifying specific genes and functional pathways to enhance our understanding of the tumor microenvironment.


Assuntos
Bases de Dados Genéticas , Neoplasias , Humanos , Perfilação da Expressão Gênica , Neoplasias/genética , Transcriptoma , Microambiente Tumoral
4.
iScience ; 26(4): 106484, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091230

RESUMO

Exhausted T (TEX) cells are main immunotherapy targets in cancer, but it lacks a general identification method to characterize TEX cell in disease. To assess the characterization of TEX cell, we extract signature of TEX cell from large cancer and chronic infection cohorts. Based on single-cell transcriptomes, a systematic T cell exhaustion prediction (TEXP) model is designed to define TEX cell in cancer and chronic infection. We then prioritize 42 marker genes, including HAVCR2, PDCD1, TOX, TIGIT and LAG3, which are associated with T cell exhaustion. TEXP could identify high TEX and low TEX subtypes in pan-cancer of TCGA. The high TEX subtypes are characterized by high immune score, immune cell infiltration, high expression of TEX marker genes and poor prognosis. In summary, TEXP and marker genes provide a resource for understanding the function of TEX cell, with implications for immune prediction and immunotherapy in chronic infection and cancer.

5.
Commun Biol ; 5(1): 1324, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463330

RESUMO

Long non-coding RNAs (lncRNAs) can crosstalk with each other by post-transcriptionally co-regulating genes involved in the same or similar functions; however, the regulatory principles and biological insights in tumor-immune are still unclear. Here, we show a multiple-step model to identify lncRNA-lncRNA immune cooperation based on co-regulating functional modules by integrating multi-omics data across 20 cancer types. Moreover, lncRNA immune cooperative networks (LICNs) are constructed, which are likely to modulate tumor-immune microenvironment by regulating immune-related functions. We highlight conserved and rewired network hubs which can regulate interactions between immune cells and tumor cells by targeting ligands and activating or inhibitory receptors such as PDCD1, CTLA4 and CD86. Immune cooperative lncRNAs (IC-lncRNAs) playing central roles in many cancers also tend to target known anticancer drug targets. In addition, these IC-lncRNAs tend to be highly expressed in immune cell populations and are significantly correlated with immune cell infiltration. The similar immune mechanisms cross cancers are revealed by the LICNs. Finally, we identify two subtypes of skin cutaneous melanoma with different immune context and prognosis based on IC-lncRNAs. In summary, this study contributes to a comprehensive understanding of the cooperative behaviours of lncRNAs and accelerating discovery of lncRNA-based biomarkers in cancer.


Assuntos
Melanoma , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , RNA Longo não Codificante/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Microambiente Tumoral/genética , Melanoma Maligno Cutâneo
6.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35722704

RESUMO

Rapid progresses in RNA-Seq and computational methods have assisted in quantifying A-to-I RNA editing and altered RNA editing sites have been widely observed in various diseases. Nevertheless, functional characterization of the altered RNA editing sites still remains a challenge. Here, we developed perturbations of RNA editing sites (PRES; http://bio-bigdata.hrbmu.edu.cn/PRES/) as the webserver for decoding functional perturbations of RNA editing sites based on editome profiling. After uploading an editome profile among samples of different groups, PRES will first annotate the editing sites to various genomic elements and detect differential editing sites under the user-selected method and thresholds. Next, the downstream functional perturbations of differential editing sites will be characterized from gain or loss miRNA/RNA binding protein regulation, RNA and protein structure changes, and the perturbed biological pathways. A prioritization module was developed to rank genes based on their functional consequences of RNA editing events. PRES provides user-friendly functionalities, ultra-efficient calculation, intuitive table and figure visualization interface to display the annotated RNA editing events, filtering options and elaborate application notebooks. We anticipate PRES will provide an opportunity for better understanding the regulatory mechanisms of RNA editing in human complex diseases.


Assuntos
MicroRNAs , Edição de RNA , Humanos , MicroRNAs/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32154224

RESUMO

Long non-coding RNAs (lncRNAs), as important ncRNA regulators, play crucial roles in the regulation of various biological processes, and their aberrant expression is related to the occurrence and development of diseases, which is gradually validated by more and more studies. Alzheimer's disease (AD) is a chronic neurodegenerative disease that often develops slowly and gradually deteriorates over time. However, which functions the lncRNAs perform in AD are almost unknown. In this study, we performed transcriptome analysis in AD, containing 12,892 known lncRNAs and 19,053 protein-coding genes (PCGs). Further, 14 down-regulated and 39 up-regulated lncRNAs were identified, compared with normal brain samples, which indicated that these lncRNAs might play critical roles in the pathogenesis of AD. In addition, 19 down-regulated and 28 up-regulated PCGs were also detected. Using the differentially expressed lncRNAs and PCGs through the WGCNA method, an lncRNA-mRNA co-expressed network was constructed. The results showed that lncRNAs RP3-522J7, MIR3180-2, and MIR3180-3 were frequently co-expressed with known AD risk PCGs. Interestingly, PCGs in the network are significantly enriched in brain- or AD-related biological functions, including the brain renin-angiotensin system, cell adhesion, neuroprotective role of THOP1 in AD, and so on. Furthermore, it was shown that 18 lncRNAs and 7 PCGs were highly expressed in normal brain tissue relative to other normal tissue types, suggesting their potential as diagnostic markers of AD, especially RP3-522J7, MIR3180-2, MIR3180-3, and CTA-929C8. In total, our study identified a compendium of AD-related dysregulated lncRNAs and characterized the corresponding biological functions of these lncRNAs in AD, which will be helpful to understand the molecular basis and pathogenesis of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...