Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
2.
Mol Divers ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609691

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.

3.
J Agric Food Chem ; 71(24): 9266-9279, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294885

RESUMO

Aiming to develop novel antifungal agents with a distinctive molecular scaffold targeting succinate dehydrogenase (SDH), 24 N'-phenyl-1H-pyrazole-4-sulfonohydrazide derivatives were first devised, synthesized, and verified by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis. The bioassays revealed that the target compounds possessed highly efficient and broad-spectrum antifungal activities against four tested plant pathogenic fungi Rhizoctonia solani (R. solani), Botrytis cinerea, Fusarium graminearum, and Alternaria sonali. Strikingly, compound B6 was assessed as the selective inhibitor against R. solani, with an in vitro EC50 value (0.23 µg/mL) that was similar to that of thifluzamide (0.20 µg/mL). The in vivo preventative effect of compound B6 (75.76%) at 200 µg/mL against R. solani was roughly comparable to thifluzamide (84.31%) under the same conditions. The exploration of morphological observations indicated that compound B6 could strongly damage the mycelium morphology, obviously increase the permeability of the cell membrane, and dramatically increase the number of mitochondria. Compound B6 also significantly inhibited SDH enzyme activity with an IC50 value of 0.28 µg/mL, and its fluorescence quenching dynamic curves were similar to that of thifluzamide. Molecular docking and molecular dynamics simulations demonstrated that compound B6 could strongly interact with similar residues around the SDH active pocket as thifluzamide. The present study revealed that the novel N'-phenyl-1H-pyrazole pyrazole-4-sulfonohydrazide derivatives are worthy of being further investigated as the promising replacements of traditional carboxamide derivatives targeting SDH of fungi.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/química , Relação Estrutura-Atividade , Succinato Desidrogenase , Simulação de Acoplamento Molecular , Rhizoctonia , Pirazóis/farmacologia , Pirazóis/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-32209989

RESUMO

Chromium contamination has been an increasing threat to the environment and to human health. Cr(VI) and Cr(III) are the most common states of chromium. However, compared with Cr(III), Cr(VI) is more toxic and more easily absorbed, therefore, it is more harmful to human beings. Thus, the conversion of toxic Cr(VI) into Cr(III) is an accepted strategy for chromium detoxification. Here, we isolated two Bacillus cereus strains with a high chromium tolerance and reduction ability, named B. cereus D and 332, respectively. Both strains demonstrated a strong pH and temperature adaptability and survival under 8 mM Cr(VI). B. cereus D achieved 87.8% Cr(VI) removal in 24 h with an initial 2 mM Cr(VI). Cu(II) was found to increase the removal rate of Cr(VI) significantly. With the addition of 0.4 mM Cu(II), 99.9% of Cr(VI) in the culture was removed by B. cereus 332 in 24 h. This is the highest removal efficiency in the literature that we have seen to date. The immobilization experiments found that sodium alginate with diatomite was the better method for immobilization and B. cereus 332 was more efficient in immobilized cells. Our research provided valuable information and new, highly effective strains for the bioremediation of chromium pollution.


Assuntos
Bacillus cereus , Cromo , Poluentes do Solo , Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Biodegradação Ambiental , Cromo/metabolismo , Solo , Poluentes do Solo/metabolismo
5.
Front Microbiol ; 10: 1130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178842

RESUMO

Acidithiobacillaceae, an important family of acidophilic and chemoautotrophic sulfur or iron oxidizers, participate in geobiochemical circulation of the elements and drive the release of heavy metals in mining associated habitats. Because of their environmental adaptability and energy metabolic systems, Acidithiobacillus spp. have become the dominant bacteria used in bioleaching for heavy metal recovery. Flagella-driven motility is associated with bacterial chemotaxis and bacterial responses to environmental stimuli. However, little is known about how the flagellum of Acidithiobacillus spp. is regulated and how the flagellum affects the growth of these chemoautotrophic bacteria. In this study, we analyzed the flagellar gene clusters in Acidithiobacillus strains and uncovered the close relationship between flagella and the sulfur-oxidizing systems (Sox system). The σ28 gene (rpoF) knockout and overexpression strains of Acidithiobacillus caldus were constructed. Scanning electron microscopy shows that A. caldus ΔrpoF cells lacked flagella, indicating the essential role of RpoF in regulating flagella synthesis in these chemoautotrophic bacteria. Motility analysis suggests that the deletion of rpoF resulted in the reduction of swarming capability, while this capability was enhanced in the rpoF overexpression strain. Both static cultivation and low concentration of energy substrates (elemental sulfur or tetrathionate) led to weak growth of A. caldus ΔrpoF cells. The deletion of rpoF promoted bacterial attachment to the surface of elemental sulfur in static cultivation. The absence of RpoF caused an obvious change in transcription profile, including genes in flagellar cluster and those involved in biofilm formation. These results provide an understanding on the regulation of flagellar hierarchy and the flagellar function in these sulfur or iron oxidizers.

6.
Magn Reson Chem ; 57(6): 285-293, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30632625

RESUMO

The quantitative structure-activity relationship models of 40 phenylhydrazine-substituted tetronic acid derivatives were established between the 1 H nuclear magnetic resonance (NMR) and 13 C NMR chemical shifts and the antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis, and Colletotrichum capsici. The models were validated by R, R2 , RA2 , variance inflation factor, F, and P values testing and residual analysis. It was concluded from the models that the 13 C NMR chemical shifts of C8, C10, C7, and the 1 H NMR chemical shifts of Ha contributed positively to the activity against Fusarium graminearum, Botrytis cinerea, Colletotrichum capsici, and Rhizoctonia cerealis, respectively. The models indicated that decreasing the election cloud density of specific nucleuses in compounds, for example, by the substituting of electron withdrawing groups, would improve the antifungal activity. These models demonstrated the practical application meaning of chemical shifts in the quantitative structure-activity relationship study. Furthermore, a practical guide was provided for further structural optimization of the antifungal phenylhydrazine-substituted tetronic acid derivatives based on the 1 H NMR and 13 C NMR chemical shifts.


Assuntos
Fungicidas Industriais/síntese química , Furanos/síntese química , Espectroscopia de Ressonância Magnética/métodos , Fenil-Hidrazinas/síntese química , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Furanos/farmacologia , Fusarium/efeitos dos fármacos , Estrutura Molecular , Fenil-Hidrazinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos
7.
Molecules ; 23(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570685

RESUMO

A series of novel fused heterocyclic compounds bearing benzo[4,5]imidazo[1,2-d][1,2,4]triazine 4a-4w were designed and conveniently synthesized via the intermediates 2-(halogenated alkyl)-1H-benzo[d]imidazoles 2a, 2b, and 2-((1-(substituted phenyl)hydrazinyl)alkyl)-1H-benzo[d]imidazoles 3a-3g. The structures of all target compounds were characterized by FT-IR, ¹H NMR, 13C NMR, and EI-MS, of which, the structure of compound 4n was further determined by the single crystal X-ray diffraction. The crystal structure of 4n was crystallized in the triclinic crystal system, space group P 1 ¯ with a = 9.033 (6) Å, b = 10.136 (7) Å, c = 10.396 (7) Å, α = 118.323 (7)°, ß = 91.750 (8)°, γ = 104.198 (7)°, Z = 2, V = 800.2 (9) ų; total R indices: R1 = 0.0475, wR2 = 0.1284. The antifungal activity of title compounds 4a-4w in vitro against the phytopathogenic fungi Botrytis cinerea (B. cinerea), Rhizoctonia solani (R. solani) and Colletotrichum capsici (C. capsici) were evaluated, the bioassay results demonstrated that most of the title compounds exhibited obvious fungicidal activities at 50 µg/mL. This work indicated that benzo[4,5]imidazo[1,2-d][1,2,4]triazine derivatives could be considered as a new leading structure in searching for novel agricultural fungicides.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/química , Botrytis/efeitos dos fármacos , Cristalografia por Raios X , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
8.
Front Microbiol ; 9: 3290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687275

RESUMO

Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.

9.
J Pestic Sci ; 42(3): 84-92, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363871

RESUMO

Substituted phenylhydrazone moieties and two carbonate groups were merged in one molecule scaffold to obtain 48 novel compounds. 1H and 13C NMR, MS, elemental analysis, and X-ray single-crystal diffraction were used to confirm their structures. Bioassay results revealed that some of the compounds have strong antifungal activities against Botrytis cinerea, Rhizoctonia solani, and Colletotrichum capsici (especially Rhizoctonia solani). Compound 5H1 is the most promising of the tested compounds against R. solani with an EC50 value of 1.91 mg/L, which is comparable with the positive control fungicide drazoxolon (1.94 mg/L). The structure-activity relationships against R. solani formed three rules: 1) small carbonate groups may improve the antifungal activity of the title compounds; 2) electron-withdrawing groups at the phenyl ring of phenylhydrazone are preferable to their non-substituted counterparts; and 3) halogen at the para position is more beneficial than at the ortho or meta position.

10.
Molecules ; 21(3): 355, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27007370

RESUMO

For the aim of discovering new fungicide, a series of phenylpyrrole-substituted tetramic acid derivatives bearing carbonates 6a-q were designed and synthesized via 4-(2,4-dioxopyrrolidin-3-ylidene)-4-(phenylamino)butanoic acids 4a-k and the cyclized products 1',3,4,5'-tetrahydro-[2,3'-bipyrrolylidene]-2',4',5(1H)-triones 5a-k. The compounds were characterized using IR, ¹H- and (13)C-NMR spectroscopy, mass spectrometry (EI-MS), and elemental analysis. The structure of 6b was confirmed by X-ray diffraction crystallography. The title compounds 6a-q were bioassayed in vitro against the phytopathogenic fungi Fusarium graminearum, Botrytis cinerea and Rhizoctonia solani at a concentration of 100 µg/mL, respectively. Most compounds displayed good inhibitory activity.


Assuntos
Antifúngicos/síntese química , Fungicidas Industriais/síntese química , Pirróis/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Carbonatos/síntese química , Carbonatos/química , Cristalografia por Raios X , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Estrutura Molecular , Pirróis/química , Pirróis/farmacologia , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...