Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128577

RESUMO

Summary: De novo peptide sequencing for tandem mass spectrometry data is not only a key technology for novel peptide identification, but also a precedent task for many downstream tasks, such as vaccine and antibody studies. In recent years, neural network models for de novo peptide sequencing have manifested a remarkable ability to accommodate various data sources and outperformed conventional peptide identification tools. However, the excellent model is computationally expensive, taking up to 1 week to process about 400 000 spectrums. This article presents PGPointNovo, a novel neural network-based tool for parallel de novo peptide sequencing. PGPointNovo uses data parallelization technology to accelerate training and inference and optimizes the training obstacles caused by large batch sizes. The results of extensive experiments conducted on multiple datasets of different sizes demonstrate that compared with PointNovo the excellent neural network-based de novo peptide sequencing tool, PGPointNovo, accelerates de novo peptide sequencing by up to 7.35× without precision or recall compromises. Availability and implementation: The source code and the parameter settings are available at https://github.com/shallFun4Learning/PGPointNovo. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1815-1824, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154341

RESUMO

Antimicrobial peptides (AMPs) are small molecule peptides that are widely found in living organisms with broad-spectrum antibacterial activity and immunomodulatory effect. Due to slower emergence of resistance, excellent clinical potential and wide range of application, AMP is a strong alternative to conventional antibiotics. AMP recognition is a significant direction in the field of AMP research. The high cost, low efficiency and long period shortcomings of the wet experiment methods prevent it from meeting the need for the large-scale AMP recognition. Therefore, computer-aided identification methods are important supplements to AMP recognition approaches, and one of the key issues is how to improve the accuracy. Protein sequences could be approximated as a language composed of amino acids. Consequently, rich features may be extracted using natural language processing (NLP) techniques. In this paper, we combine the pre-trained model BERT and the fine-tuned structure Text-CNN in the field of NLP to model protein languages, develop an open-source available antimicrobial peptide recognition tool and conduct a comparison with other five published tools. The experimental results show that the optimization of the two-phase training approach brings an overall improvement in accuracy, sensitivity, specificity, and Matthew correlation coefficient, offering a novel approach for further research on AMP recognition.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Processamento de Linguagem Natural
3.
Comput Biol Med ; 139: 104963, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700253

RESUMO

The accurate diagnosis of autism spectrum disorder (ASD), a common mental disease in children, has always been an important task in clinical practice. In recent years, the use of graph neural network (GNN) based on functional brain network (FBN) has shown powerful performance for disease diagnosis. The challenge to construct "ideal" FBN from resting-state fMRI data remained. Moreover, it remains unclear whether and to what extent the non-Euclidean structure of different FBNs affect the performance of GNN-based disease classification. In this paper, we proposed a new method named Pearson's correlation-based Spatial Constraints Representation (PSCR) to estimate the FBN structures that were transformed to brain graphs and then fed into a graph attention network (GAT) to diagnose ASD. Extensive experiments on comparing different FBN construction methods and classification frameworks were conducted on the ABIDE I dataset (n = 871). The results demonstrated the superiority of our PSCR method and the influence of different FBNs on the GNN-based classification results. The proposed PSCR and GAT framework achieved promising classification results for ASD (accuracy: 72.40%), which significantly outperformed competing methods. This will help facilitate patient-control separation, and provide a promising solution for future disease diagnosis based on the FBN and GNN framework.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...