Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 628-637, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38897064

RESUMO

The aqueous zinc ion battery (AZIB) has been widely studied due to its rapid kinetics and high specific capacity attributed to the chemical insertion of H+ protons. However, the current research landscape lacks comprehensive investigations into copper-based sulfide materials and the intricate co-embedding/extraction mechanism of H+/Zn2+. In this study, we employed an innovative in-situ etching method to synthesize a current collector-integrated Cu@Cu31S16 cathode material. Cu31S16 not only exhibits excellent stability and conductivity but also activates proton insertion chemistry. Consequently, we have demonstrated, for the first time, efficient and reversible co-embedding/extraction behavior of H+/Zn2+ in Zn-Cu31S16 batteries. Specifically, owing to the lower charging and discharging plateaus of zinc ions (0.65 V, 0.45 V) compared to H+ (0.97 V, 0.84 V) in Zn-Cu31S16 batteries, two distinct plateaus were observed. Moreover, we delved into the mechanism of ion co-embedding/extraction by exploring different ions (Zn2+, H+/Zn2+, H+) within varying voltage ranges. This exploration led to the development of three types of ion batteries, where Zn2+, H+/Zn2+, and H+ exhibit co-embedding/extraction within voltage ranges of 0.3-0.9 V, 0.3-1.05 V, and 0.5-1.05 V, respectively. These batteries have achieved impressive performance with specific capacities of 282.74 mAh g-1, 587.4 mAh g-1 and 687.3 mAh g-1, respectively. Introducing the concept of "Voltage-Selective Ion Co-Embedding/Extraction", this study broadens the research scope of AZIBs. This research not only offers a feasible solution and theoretical guidance for future proton batteries but also underscores the tremendous potential of AHPB.

2.
Adv Sci (Weinh) ; : e2402497, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884340

RESUMO

Catalysis is crucial to improve redox kinetics in lithium-sulfur (Li-S) batteries. However, conventional catalysts that consist of a single metal element are incapable of accelerating stepwise sulfur redox reactions which involve 16-electron transfer and multiple Li2Sn (n = 2-8) intermediate species. To enable fast kinetics of Li-S batteries, it is proposed to use high-entropy alloy (HEA) nanocatalysts, which are demonstrated effective to adsorb lithium polysulfides and accelerate their redox kinetics. The incorporation of multiple elements (Co, Ni, Fe, Pd, and V) within HEAs greatly enhances the catalytically active sites, which not only improves the rate capability, but also elevates the cycling stability of the assembled batteries. Consequently, HEA-catalyzed Li-S batteries achieve a high capacity up to 1364 mAh g-1 at 0.1 C and experience only a slight capacity fading rate of 0.054% per cycle over 1000 cycles at 2 C, while the assembled pouch cell achieves a high specific capacity of 1192 mAh g-1. The superior performance of Li-S batteries demonstrates the effectiveness of the HEA catalysts with maximized synergistic effect for accelerating S conversion reactions, which opens a way to catalytically improving stepwise electrochemical conversion reactions.

3.
Adv Mater ; 36(21): e2312959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332502

RESUMO

Ternary strategyopens a simple avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The introduction of wide bandgap polymer donors (PDs) as third component canbetter utilize sunlight and improve the mechanical and thermal stability of active layer. However, efficient ternary OSCs (TOSCs) with two PDs are rarely reported due to inferior compatibility and shortage of efficient PDs match with acceptors. Herein, two PDs-(PBB-F and PBB-Cl) are adopted in the dual-PDs ternary systems to explore the underlying mechanisms and improve their photovoltaic performance. The findings demonstrate that the third components exhibit excellent miscibility with PM6 and are embedded in the host donor to form alloy-like phase. A more profound mechanism for enhancing efficiency through dual mechanisms, that are the guest energy transfer to PM6 and charge transport at the donor/acceptor interface, has been proposed. Consequently, the PM6:PBB-Cl:BTP-eC9 TOSCs achieve PCE of over 19%. Furthermore, the TOSCs exhibit better thermal stability than that of binary OSCs due to the reduction in spatial site resistance resulting from a more tightly entangled long-chain structure. This work not only provides an effective approach to fabricate high-performance TOSCs, but also demonstrates the importance of developing dual compatible PD materials.

4.
Nat Commun ; 14(1): 7247, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945604

RESUMO

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g-1, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNi0.8Co0.1Mn0.1O2 battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g-1). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

5.
Nat Commun ; 14(1): 4211, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452049

RESUMO

Aqueous zinc batteries are ideal candidates for grid-scale energy storage because of their safety and low-cost aspects. However, the production of large-format aqueous Zn batteries is hindered by electrolyte consumption, hydrogen gas evolution and accumulation, and Zn dendrites growth. To circumvent these issues, here we propose an "open" pouch cell design for large-format production of aqueous Zn batteries, which can release hydrogen gas and allow the refilling of the electrolyte components consumed during cell cycling. The cell uses a gel electrolyte containing crosslinked kappa (k)-carrageenan and chitosan. It bonds water molecules and hinders their side reaction with Zn, preventing electrolyte leakage and fast evaporation. As a proof-of-concept, we report the assembly and testing of a Zn | |ZnxV2O5·nH2O multi-layer "open" pouch cell using the carrageenan/chitosan gel electrolyte, which delivers an initial discharge capacity of 0.9 Ah and 84% capacity retention after 200 cycles at 200 mA g‒1, 370 kPa and 25 °C.


Assuntos
Quitosana , Zinco , Carragenina , Metais , Eletrólitos , Hidrogênio , Água
6.
Sci Adv ; 9(5): eade5802, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724274

RESUMO

Safety concerns related to the abuse operation and thermal runaway are impeding the large-scale employment of high-energy-density rechargeable lithium batteries. Here, we report that by incorporating phosphorus-contained functional groups into a hydrocarbon-based polymer, a smart risk-responding polymer is prepared for effective mitigation of battery thermal runaway. At room temperature, the polymer is (electro)chemically compatible with electrodes, ensuring the stable battery operation. Upon thermal accumulation, the phosphorus-containing radicals spontaneously dissociate from the polymer skeleton and scavenge hydrogen and hydroxyl radicals to terminate the exothermic chain reaction, suppressing thermal generation at an early stage. With the smart risk-responding strategy, we demonstrate extending the time before thermal runaway for a 1.8-Ah Li-ion pouch cell by 100% (~9 hours) compared with common cells, creating a critical time window for safety management. The temperature-triggered automatic safety-responding strategy will improve high-energy-density battery tolerance against thermal abuse risk and pave the way to safer rechargeable batteries.

7.
ACS Nano ; 17(1): 668-677, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534047

RESUMO

The aqueous zinc (Zn) battery is a safe and eco-friendly energy-storage system. However, the use of Zn metal anodes is impeded by uncontrolled Zn deposition behavior. Herein, we regulate the Zn-ion deposition process for dendrite-free Zn metal anodes using an aminosilane molecular layer with high zincophilic sites and narrow molecule channels. The aminosilane molecular layer causes Zn ions to undergo consecutive processes including being captured by the amine functional groups of aminosilane and diffusing through narrow intermolecular channels before electroplating, which induces partial dehydration of hydrated Zn ions and uniform Zn ion flux, promoting reversible Zn stripping/plating. Through this molecule-induced capture-diffusion-deposition procedure of Zn ions, smooth and compact Zn electrodeposited layers are obtained. Hence, the aminosilane-modified Zn anode has high Coulombic efficiency (∼99.5%), long lifespan (∼3000 h), and high capacity retention in full cells (88.4% for 600 cycles). This strategy not only has great potential for achieving dendrite-free Zn anodes in practical Zn batteries but also suggests an interface-modification principle at the molecular level for other alternative metallic anodes.

8.
Natl Sci Rev ; 9(8): nwac084, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35992230

RESUMO

Non-graphitic carbons are promising anode candidates for sodium-ion batteries, while their variable and complicated microstructure severely limits the rational design of high-energy carbon anodes that could accelerate the commercialization of sodium-ion batteries, as is the case for graphite in lithium-ion batteries. Here, we propose sieving carbons, featuring highly tunable nanopores with tightened pore entrances, as high-energy anodes with extensible and reversible low-potential plateaus (<0.1 V). It is shown that the tightened pore entrance blocks the formation of the solid electrolyte interphase inside the nanopores and enables sodium clustering to produce the plateau. Theoretical and spectroscopic studies also show that creating a larger area of sodiophilic pore surface leads to an almost linearly increased number of sodium clusters, and controlling the pore body diameter guarantees the reversibility of sodium cluster formation, producing a sieving carbon anode with a record-high plateau capacity of 400 mAh g-1. More excitingly, this approach to preparing sieving carbons has the potential to be scalable for modifying different commercial porous carbons.

9.
ACS Appl Mater Interfaces ; 14(36): 41065-41071, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044205

RESUMO

Confining Li metal in a three-dimensional (3D) matrix has been proven effective in improving the Li-metal anodes; however, in most studies, the loading of Li in the 3D matrix is far excessive, resulting in a dense bulk Li-metal anode with a low Li-utilization rate, forfeiting the effect of the 3D matrix. Here, we show that limiting the loading of Li metal within an interface-modified 3D carbon matrix not only increases the Li-utilization rate but also improves the electrochemical performance of the Li-metal anode. We use lithiophilic Fe2O3 granules anchored on a 3D carbon fiber scaffold to guide molten Li dispersion onto the fibers with controlled Li loading. Limiting Li loading maximizes the interface lithiophilic effect of the Fe2O3 granules while preserving sufficient space for electrolyte infusion, collectively ensuring uniform Li deposition and fast Li+ transport kinetics. The Li anode with limited Li dosage achieves remarkably improved Li-anode performances, including long lifespan, low voltage polarization, and low electrochemical resistance in both the symmetric cells and full cells. The improved electrochemical performance of the limited Li anode substantiates the importance to reduce Li loading from a fresh perspective and provides an avenue for building practical Li-metal batteries.

10.
Nat Nanotechnol ; 17(6): 629-636, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437322

RESUMO

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.


Assuntos
Quitosana , Condutividade Elétrica , Hidróxidos , Troca Iônica , Membranas Artificiais
11.
Adv Sci (Weinh) ; 9(9): e2105213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098702

RESUMO

Lithium batteries are key components of portable devices and electric vehicles due to their high energy density and long cycle life. To meet the increasing requirements of electric devices, however, energy density of Li batteries needs to be further improved. Anode materials, as a key component of the Li batteries, have a remarkable effect on the increase of the overall energy density. At present, various anode materials including Li anodes, high-capacity alloy-type anode materials, phosphorus-based anodes, and silicon anodes have shown great potential for Li batteries. Composite-structure anode materials will be further developed to cater to the growing demands for electrochemical storage devices with high-energy-density and high-power-density. In this review, the latest progress in the development of high-energy Li batteries focusing on high-energy-capacity anode materials has been summarized in detail. In addition, the challenges for the rational design of current Li battery anodes and the future trends are also presented.

12.
Sci Adv ; 8(4): eabm4322, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089780

RESUMO

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high-surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements). We apply just 5 min of Joule heating to promote the phase transition of the nanoparticles into L10 intermetallic structure, which is then preserved by rapidly cooling. This disorder-to-order transition results in phase-stable nanoscale MPEIs with compositions (e.g., PtPdAuFeCoNiCuSn), which have not been previously attained by traditional synthetic methods. This synthesis strategy offers a new paradigm for developing previously unexplored MPEI nanoparticles by accessing a nanoscale-size regime and novel compositions with potentially broad applications.

13.
Nano Lett ; 22(1): 255-262, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932367

RESUMO

Chemically ordered intermetallic nanoparticles are promising candidates for energy-related applications such as electrocatalysis. However, the synthesis of intermetallics generally requires long annealing (several hours) to achieve the ordered structure, which causes nanoparticles agglomeration and diminished performance, particularly for catalysis. Herein, we demonstrate a new rapid Joule heating approach that can synthesize highly ordered and well-dispersed intermetallic nanoparticles. As a proof-of-concept, we synthesized fully ordered Pd3Pb intermetallic nanoparticles that feature small size distribution (∼6 nm). Computational analysis of the L12 Pd3Pb material suggests that this rapid atomic ordering transformation can be attributed to a vacancy-mediated diffusion mechanism. Moreover, the nanoparticles demonstrate excellent electrocatalytic activity and exceptional stability for the oxygen reduction reaction (ORR), retaining >95% of the current density over 10 h of chronoamperometry test with negligible structural and compositional changes. This study demonstrates a new strategy of providing a new direction for intermetallic synthesis and catalyst discovery.


Assuntos
Nanopartículas , Catálise
14.
Nature ; 598(7882): 590-596, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671167

RESUMO

Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains1-3. Here we report a general strategy for achieving high-performance solid polymer ion conductors by engineering of molecular channels. Through the coordination of copper ions (Cu2+) with one-dimensional cellulose nanofibrils, we show that the opening of molecular channels within the normally ion-insulating cellulose enables rapid transport of Li+ ions along the polymer chains. In addition to high Li+ conductivity (1.5 × 10-3 siemens per centimetre at room temperature along the molecular chain direction), the Cu2+-coordinated cellulose ion conductor also exhibits a high transference number (0.78, compared with 0.2-0.5 in other polymers2) and a wide window of electrochemical stability (0-4.5 volts) that can accommodate both the Li-metal anode and high-voltage cathodes. This one-dimensional ion conductor also allows ion percolation in thick LiFePO4 solid-state cathodes for application in batteries with a high energy density. Furthermore, we have verified the universality of this molecular-channel engineering approach with other polymers and cations, achieving similarly high conductivities, with implications that could go beyond safe, high-performance solid-state batteries.

15.
Nano Lett ; 21(14): 6163-6170, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259523

RESUMO

The use of solid-state electrolyte may be necessary to enable safe, high-energy-density Li metal anodes for next-generation energy storage systems. However, the inhomogeneous local current densities during long-term cycling result in instability and detachment of the Li anode from the electrolyte, which greatly hinders practical application. In this study, we report a new approach to maintain a stable Li metal | electrolyte interface by depositing an amorphous carbon nanocoating on garnet-type solid-state electrolyte. The carbon nanocoating provides both electron and ion conducting capability, which helps to homogenize the lithium metal stripping and plating processes. After coating, we find the Li metal/garnet interface displays stable cycling at 3 mA/cm2 for more than 500 h, demonstrating the interface's outstanding electro-chemomechanical stability. This work suggests amorphous carbon coatings may be a promising strategy for achieving stable Li metal | electrolyte interfaces and reliable Li metal batteries.

16.
Sci Adv ; 6(17): eaaz6844, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494647

RESUMO

Bimetallics are emerging as important materials that often exhibit distinct chemical properties from monometallics. However, there is limited access to homogeneously alloyed bimetallics because of the thermodynamic immiscibility of the constituent elements. Overcoming the inherent immiscibility in bimetallic systems would create a bimetallic library with unique properties. Here, we present a nonequilibrium synthesis strategy to address the immiscibility challenge in bimetallics. As a proof of concept, we synthesize a broad range of homogeneously alloyed Cu-based bimetallic nanoparticles regardless of the thermodynamic immiscibility. The nonequilibrated bimetallic nanoparticles are further investigated as electrocatalysts for carbon monoxide reduction at commercially relevant current densities (>100 mA cm-2), in which Cu0.9Ni0.1 shows the highest multicarbon product Faradaic efficiency of ~76% with a current density of ~93 mA cm-2. The ability to overcome thermodynamic immiscibility in multimetallic synthesis offers freedom to design and synthesize new functional nanomaterials with desired chemical compositions and catalytic properties.

17.
Water Res ; 182: 116019, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544732

RESUMO

An integrated process combining ozonation, ceramic membrane filtration with biological activated carbon filtration (O3+CMF + BAC process) was designed and evaluated using a pilot scale (10 m3/d) test for the advanced treatment of hypersaline petrochemical wastewater in a coastal wastewater plant. The membrane flux and ozone dosage were optimized for the optimal treatment performance of this integrated process. The results showed that this integrated process performed well in pollutant removal. The concentrations of CODCr, phosphate and color in the effluents were 17.9 mg/L, 0.25 mg/L, and 5 dilution times in average, respectively. The effluent quality met the local discharge standard even under a high influent COD concentration (195 mg/L in average). The synergistic effect of the ozonation and ceramic membrane filtration was investigated through the fluorescence characteristics and hydrophobic/hydrophilic properties of organic compounds. It revealed that ozonation mitigated the membrane fouling and the nanopores in the ceramic membranes enhanced the ozonation efficiency. Meanwhile, the Fenton process had a slightly better effluent quality than the integrated process, but Fenton process consumed much more chemicals and required the sludge disposal, resulting in higher cost. The estimated unit cost for this integrated process was only 34% of that for the Fenton process. Overall, the integrated process demonstrated high stability, reliable effluents and low cost, providing a promising and cost-efficient technology for the treatment of hypersaline petrochemical wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Filtração , Projetos Piloto , Eliminação de Resíduos Líquidos , Águas Residuárias
18.
Antiviral Res ; 170: 104556, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299269

RESUMO

Subtype H7 avian influenza viruses have been found to be associated with human infection and represent a risk for global public health. In 2013, the emergence of H7N9 virus in human beings and persistent human infection in China raised the most serious pandemic threat. Here we identified a human monoclonal antibody, P52E03, targeting the hemagglutinin (HA) of subtype H7 influenza viruses (H7 antigen), from a convalescent patient infected with H7N9 in 2017. P52E03 showed in vitro hemagglutination inhibiting (HI) and neutralizing activity against subtype H7 viruses belonging to both North American and Eurasian lineages. Moreover, it could prophylactically protect mice against weight loss and death caused by challenge with lethal H7N9 viruses in vivo and, therefore, is a candidate for development of antiviral agent against H7N9 infection. By generating escape mutant variants, we found that a single G151E substitution in the viral H7 antigenic site A could abort the neutralizing activity. Computational structural prediction of the P52E03/H7 complex revealed that residues including G151 in and around the conserved antigenic site A region are important for antigen recognition by the H7 cross-reactive antibody. Finally, we found that the P52E03 germline precursor (gHgL) antibody recognizes HA with measurable affinity, suggesting that its epitope is vulnerable to the human immune system and might elicit neutralizing antibodies (nAbs) in vivo after vaccination.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização Passiva , Subtipo H7N9 do Vírus da Influenza A/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Reações Cruzadas , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Infecções por Orthomyxoviridae/prevenção & controle
19.
Mol Pharm ; 16(8): 3647-3656, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31282682

RESUMO

The IgG1 CH2 domain is involved in Fc-mediated effector functions and is a promising scaffold for development of novel therapeutics. We previously reported that removal of seven unstructured N-terminal residues of an autonomous human IgG1 CH2 domain significantly increased its stability and aggregation resistance. However, the way in which the C-terminal residues affect folding is unclear. Here, we found that the CH2 C-terminus is highly sensitive to truncation although these residues adopt a random coil conformation according to the crystal structure of a CH2 domain. To optimize the C-terminus, we used a phage display platform for high-throughput screening of mutants with improved physicochemical properties. After panning of the CH2 mutant library at high temperature against a CH2-specific antibody recognizing a conformational epitope, we obtained two candidates, B3 and D9, with markedly increased thermal stability. We found that substitution of K338 (EU numbering) by isoleucine is crucial for the increased stability, which might be due to enhanced hydrophobic interactions involving W313. However, the aggregation propensity was also increased. To reduce the aggregation propensity, we further mutated the last two residues A339 and K340 adjacent to residue I338 at the C-terminus by rational design and identified a mutant, CH2-IKS (K338I, A339K, and K340S), with high stability and aggregation resistance. In summary, the C-terminus of CH2 is important for its folding and could be further optimized toward better potential applications for CH2-based therapeutics. Our strategy might be also useful for stabilization of other Ig-like proteins.


Assuntos
Anticorpos Monoclonais/genética , Imunoglobulina G/genética , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos/genética , Substituição de Aminoácidos , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Imunoglobulina G/uso terapêutico , Biblioteca de Peptídeos , Agregados Proteicos/genética , Domínios Proteicos/genética , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
20.
J Biol Chem ; 294(27): 10638-10648, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138647

RESUMO

The envelope protein of Zika virus (ZIKV) exists as a dimer on the mature viral surface and is an attractive antiviral target because it mediates viral entry. However, recombinant soluble wild-type ZIKV envelope (wtZE) might preferentially exist as monomer (monZE). Recently, it has been shown that the A264C substitution could promote formation of dimeric ZIKV envelope protein (ZEA264C), requiring further characterization of purified ZEA264C for its potential applications in vaccine development. We also noted that ZEA264C, connected by disulfide bond, might be different from the noncovalent native envelope dimer on the virion surface. Because the antibody Fc fragment exists as dimer and is widely used for fusion protein construction, here we fused wtZE to human immunoglobulin G1 (IgG1) Fc fragment (ZE-Fc) for noncovalent wtZE dimerization. Using a multistep purification procedure, we separated dimeric ZEA264C and ZE-Fc, revealing that they both exhibit typical ß-sheet-rich secondary structures and stabilities similar to those of monZE. The binding activities of monZE, ZEA264C, and ZE-Fc to neutralizing antibodies targeting different epitopes indicated that ZEA264C and ZE-Fc could better mimic the native dimeric status, especially in terms of the formation of tertiary and quaternary epitopes. Both ZEA264C and ZE-Fc recognize a ZIKV-sensitive cell line as does monZE, indicating that the two constructs are still functional. Furthermore, a murine immunization assay disclose that ZEA264C and ZE-Fc elicit more neutralizing antibody responses than monZE does. These results suggest that the two immunogen candidates ZEA264C and ZE-Fc have potential utility for neutralizing antibody selection and vaccine design against ZIKV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Zika virus/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Dimerização , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/imunologia , Zika virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...