Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(55): 7061-7064, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38904326

RESUMO

CO2 capture by deep eutectic solvents (DESs) formed between 1,3-bis(isopropyl)imidazolium 1,2,4-triazolide ([IiPim][Triz]) and ethylene glycol (EG) is investigated in this study. [IiPim][Triz]-EG DESs exhibit a capacity of ∼1.0 mol CO2 per mol DES at 1.0 atm and 25 °C. Surprisingly, mechanistic results disclose that CO2 reacts with EG but does not bind with the C-2 site of the [IiPim]+ cation, which may be due to the high steric hindrance of the C-2 site of the N-heterocyclic carbene IiPim present in [IiPim][Triz]-EG DESs.

2.
Acta Pharmacol Sin ; 44(6): 1149-1160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36473990

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of ß-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.


Assuntos
Cardiomiopatias , Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Animais , Camundongos , Cardiomegalia/patologia , Cardiomiopatias/patologia , Acetato de Desoxicorticosterona/farmacologia , Acetato de Desoxicorticosterona/uso terapêutico , Fibrose , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Volume Sistólico/fisiologia , Via de Sinalização Wnt
4.
Int Heart J ; 63(5): 814-820, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36104232

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an emerging driver of cardiac arrhythmias. However, the relationship between NAFLD and malignant arrhythmia in non-ST-segment elevation myocardial infarction (NSTEMI) patients is still unclear.In this study, 358 NSTEMI inpatients were enrolled. They all received 24-hour Holter monitoring after percutaneous coronary intervention. All inpatients were divided into two groups: the non-NAFLD group (236 cases, 65.9%) and the NAFLD group (122 cases, 34.1%). Compared with the non-NAFLD group, the NAFLD group had a significantly higher incidence of PVCs/hour > 5 (premature ventricular complexes, 32.0% versus 9.3%, P < 0.001), ventricular tachycardia (VT, 22.1% versus 5.9%, P < 0.001), and sinus arrest (SA, 7.4% versus 1.3%, P = 0.002). We found that NAFLD was closely associated with the occurrence of VT [unadjusted odds ratio (OR) 4.507, 95% confidence interval (CI) 2.263-8.974, P < 0.001] and SA (OR 6.186, 95%CI 1.643-23.291, P = 0.007). After adjusting for age, sex, body mass index, and other confounding factors, the above differences were still statistically significant (VT: OR 4.808, 95%CI 2.254-10.253, P < 0.001; SA: OR 9.589, 95%CI 2.027-45.367, P = 0.004).NAFLD is associated with the occurrence of VT and SA in NSTEMI patients. It indicates that NAFLD might be a risk factor for malignant arrhythmias in post-NSTEMI patients.


Assuntos
Parada Cardíaca , Infarto do Miocárdio sem Supradesnível do Segmento ST , Hepatopatia Gordurosa não Alcoólica , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Parada Cardíaca/complicações , Humanos , Infarto do Miocárdio sem Supradesnível do Segmento ST/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Intervenção Coronária Percutânea/efeitos adversos , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Taquicardia Ventricular/complicações , Taquicardia Ventricular/etiologia , Complexos Ventriculares Prematuros/etiologia
5.
Chem Commun (Camb) ; 58(53): 7376-7379, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699117

RESUMO

Herein, tetraethylammonium 1,2,3-triazolide ([Et4N][Tz]), 1,2,3-triazole (Tz), and ethylene glycol (EG) are used to form DESs for CO2 capture. Surprisingly, [Et4N][Tz]-EG DESs can react with CO2, but [Et4N][Tz]-Tz cannot react with CO2, although both of the two systems contain the same anion [Tz]-. Unexpectedly, with the addition of EG to [Et4N][Tz]-Tz, the formed ternary DESs [Et4N][Tz]-Tz-EG can react with CO2, although neither EG nor [Et4N][Tz]-Tz can react with CO2 before the combination of them. NMR, FTIR and theoretical calculation results disclose that the surprise CO2 absorption behavior mainly depends on the strength of hydrogen bonds (H-bonds) between the anion [Tz]- and H-bond donors (EG or Tz). The strength of the H-bond between [Tz]- and Tz is much stronger than that between [Tz]- and EG. The strong H-bond between [Tz]- and Tz in [Et4N][Tz]-Tz greatly reduces the basicity of [Tz]-, rendering the anion [Tz]- unreactive to CO2. In [Et4N][Tz]-Tz-EG ternary DESs, EG competes with Tz to form a H-bond with [Tz]-, which weakens the strength of the H-bond between [Tz]- and Tz. Moreover, H-bonds also impact the desorption behavior. [Et4N][Tz] : EG (1 : 2) is regenerated at 60 °C, whereas the chemisorbed CO2 by [Et4N][Tz] : Tz : EG (1 : 2 : 2) can be released even down to 30 °C.

6.
Chem Commun (Camb) ; 58(42): 6212-6214, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35507031

RESUMO

In this work, we report the SO2 capture by 2-pyridineethanol (2-PyEtOH). 2-PyEtOH exhibits a high SO2 capacity, up to 1.16 g SO2 per g solvent at 1.0 atm. The effect of temperature and pressure on the SO2 absorption by 2-PyEtOH is investigated. It is found that 2-PyEtOH can capture 0.57 g SO2 per g solvent even at a low SO2 partial pressure of 0.10 atm. Interestingly, the absorbed SO2 by 2-PyEtOH can be released at a low temperature of 50 °C, suggesting that 2-PyEtOH not only has a high capacity but also exhibits a regeneration process of low energy cost. Moreover, 2-PyEtOH also exhibits an excellent reversibility. The NMR and FTIR studies disclose that SO2 reacts with the -OH group of 2-PyEtOH, resulting in the formation of a zwitterionic sulfite. We believe that the findings of this work will be very useful for the design of efficient absorbents for SO2 capture.


Assuntos
Dióxido de Enxofre , Espectroscopia de Ressonância Magnética , Solventes , Dióxido de Enxofre/química , Temperatura
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163818

RESUMO

Deep eutectic solvents (DESs) have been widely used to capture CO2 in recent years. Understanding CO2 mechanisms by DESs is crucial to the design of efficient DESs for carbon capture. In this work, we studied the CO2 absorption mechanism by DESs based on ethylene glycol (EG) and protic ionic liquid ([MEAH][Im]), formed by monoethanolamine (MEA) with imidazole (Im). The interactions between CO2 and DESs [MEAH][Im]-EG (1:3) are investigated thoroughly by applying 1H and 13 C nuclear magnetic resonance (NMR), 2-D NMR, and Fourier-transform infrared (FTIR) techniques. Surprisingly, the results indicate that CO2 not only binds to the amine group of MEA but also reacts with the deprotonated EG, yielding carbamate and carbonate species, respectively. The reaction mechanism between CO2 and DESs is proposed, which includes two pathways. One pathway is the deprotonation of the [MEAH]+ cation by the [Im]- anion, resulting in the formation of neutral molecule MEA, which then reacts with CO2 to form a carbamate species. In the other pathway, EG is deprotonated by the [Im]-, and then the deprotonated EG, HO-CH2-CH2-O-, binds with CO2 to form a carbonate species. The absorption mechanism found by this work is different from those of other DESs formed by protic ionic liquids and EG, and we believe the new insights into the interactions between CO2 and DESs will be beneficial to the design and applications of DESs for carbon capture in the future.


Assuntos
Dióxido de Carbono/química , Etanolamina/química , Etilenoglicol/química , Imidazóis/química , Solventes/química , Adsorção , Solventes Eutéticos Profundos/química , Líquidos Iônicos/química , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Chem Commun (Camb) ; 58(13): 2160-2163, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35060571

RESUMO

Deep eutectic solvents (DESs) formed by bio-phenol-derived superbase ionic liquids (ILs) and ethylene glycol (EG) exhibit a high CO2 capacity, up to 1.0 mol CO2/mol DESs, which is much better than those of the parent ILs. Surprisingly, mechanism results indicate that CO2 reacts with EG, but doesn't react with phenolic anions in the solvent, which is different from other DESs formed by superbase ILs and EG. The reaction pathway between CO2 and DESs used in this work may include two steps. The first step is the acid-base reaction between the phenolic anion and EG, which forms HO-CH2-CH2-O-, and then CO2 is attached to the anion HO-CH2-CH2-O- to form a carbonate species.

9.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885746

RESUMO

Recently, deep eutectic solvents (DESs), a new type of solvent, have been studied widely for CO2 capture. In this work, the anion-functionalized deep eutectic solvents composed of phenol-based ionic liquids (ILs) and hydrogen bond donors (HBDs) ethylene glycol (EG) or 4-methylimidazole (4CH3-Im) were synthesized for CO2 capture. The phenol-based ILs used in this study were prepared from bio-derived phenols carvacrol (Car) and thymol (Thy). The CO2 absorption capacities of the DESs were determined. The absorption mechanisms by the DESs were also studied using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and mass spectroscopy. Interestingly, the results indicated that CO2 reacted with both the phenolic anions and EG, generating the phenol-based carbonates and the EG-based carbonates, when CO2 interacted with the DESs formed by the ILs and EG. However, CO2 only reacted with the phenolic anions when the DESs formed by the ILs and 4CH3-Im. The results indicated that the HBDs impacted greatly on the CO2 absorption mechanism, suggesting the mechanism can be tuned by changing the HBDs, and the different reaction pathways may be due to the steric hinderance differences of the functional groups of the HBDs.

10.
J Am Heart Assoc ; 10(21): e021895, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713723

RESUMO

Background Exploring potential therapeutic target is of great significance for myocardial infarction (MI) and post-MI heart failure. Transcription factor Yin-Yang 1 (YY1) is an essential regulator of apoptosis and angiogenesis, but its role in MI is unclear. Methods and Results The expression of YY1 was assessed in the C57BL/6J mouse heart following MI. Overexpression or silencing of YY1 in the mouse heart was achieved by adeno-associated virus 9 injection. The survival, cardiac function, and scar size, as well as the apoptosis, angiogenesis, cardiac fibrosis, T helper 2 lymphocyte cytokine production, and macrophage polarization were assessed. The effects of YY1 on Akt phosphorylation and vascular endothelial growth factor production were also investigated. The expression of YY1 in heart was significantly stimulated by MI. The survival rate, cardiac function, scar size, and left ventricular volume of mice were improved by YY1 overexpression but worsened by YY1 silencing. YY1 alleviated cardiac apoptosis and fibrosis, promoted angiogenesis, T helper 2 cytokine production, and M2 macrophage polarization in the post-MI heart, it also enhanced the tube formation and migration ability of endothelial cells. Enhanced Akt phosphorylation, along with the increased vascular endothelial growth factor levels were observed in presence of YY1 overexpression. Conclusions YY1 ameliorates cardiac injury and remodeling after MI by repressing cardiomyocyte apoptosis and boosting angiogenesis, which might be ascribed to the enhancement of Akt phosphorylation and the subsequent vascular endothelial growth factor up-regulation. Increased T helper 2 cytokine production and M2 macrophage polarization may also be involved in YY1's cardioprotective effects. These findings supported YY1 as a potential target for therapeutic investigation of MI.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Animais , Apoptose , Cicatriz , Citocinas , Modelos Animais de Doenças , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Remodelação Ventricular , Yin-Yang
11.
Sci Rep ; 11(1): 15836, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349170

RESUMO

Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.


Assuntos
Gastrinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
12.
J Cardiovasc Transl Res ; 14(4): 610-618, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32144627

RESUMO

Ischemia reperfusion (I/R)-induced arrhythmia is a serious complication in patients with cardiac infarction. Remodeling of connexin (Cx) 43, manifested as phosphorylation, contributes significantly to arrhythmogenesis. Integrin-linked kinase (ILK) attenuated ventricular remodeling and improved cardiac function in rats after myocardial infarction. We hypothesized that ILK, through Cx43 phosphorylation, would be protective against I/R-induced ventricular arrhythmias. Our study showed that I/R-induced ventricular arrhythmias were attenuated by an ILK agonist LPTP and worsened by the ILK inhibitor Cpd22. I/R disrupted Cx43 distribution, but it was partially normalized in the presence of LPTP. Compared with I/R, the phosphorylation of Akt was increased significantly after pretreatment with LPTP. The increase in phosphorylated Akt was physiologically significant because, in the presence of the Akt inhibitor MK2206, the protective effects of LPTP were blocked. This indicated that ILK activation prevented I/R-induced-ventricular arrhythmia, an effect potentially related to inhibition of Cx43 remodeling via Akt activation.


Assuntos
Antiarrítmicos/farmacologia , Conexina 43/metabolismo , Ativadores de Enzimas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Animais , Modelos Animais de Doenças , Ativação Enzimática , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Masculino , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/enzimologia , Fibrilação Ventricular/patologia , Fibrilação Ventricular/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
13.
Eur Heart J ; 42(14): 1415-1430, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33280021

RESUMO

AIMS: G protein-coupled receptor kinase 4 (GRK4) has been reported to play an important role in hypertension, but little is known about its role in cardiomyocytes and myocardial infarction (MI). The goal of present study is to explore the role of GRK4 in the pathogenesis and progression of MI. METHODS AND RESULTS: We studied the expression and distribution pattern of GRK4 in mouse heart after MI. GRK4 A486V transgenic mice, inducible cardiomyocyte-specific GRK4 knockout mice, were generated and subjected to MI with their control mice. Cardiac infarction, cardiac function, cardiomyocyte apoptosis, autophagic activity, and HDAC4 phosphorylation were assessed. The mRNA and protein levels of GRK4 in the heart were increased after MI. Transgenic mice with the overexpression of human GRK4 wild type (WT) or human GRK4 A486V variant had increased cardiac infarction, exaggerated cardiac dysfunction and remodelling. In contrast, the MI-induced cardiac dysfunction and remodelling were ameliorated in cardiomyocyte-specific GRK4 knockout mice. GRK4 overexpression in cardiomyocytes aggravated apoptosis, repressed autophagy, and decreased beclin-1 expression, which were partially rescued by the autophagy agonist rapamycin. MI also induced the nuclear translocation of GRK4, which inhibited autophagy by increasing HDAC4 phosphorylation and decreasing its binding to the beclin-1 promoter. HDAC4 S632A mutation partially restored the GRK4-induced inhibition of autophagy. MI caused greater impairment of cardiac function in patients carrying the GRK4 A486V variant than in WT carriers. CONCLUSION: GRK4 increases cardiomyocyte injury during MI by inhibiting autophagy and promoting cardiomyocyte apoptosis. These effects are mediated by the phosphorylation of HDAC4 and a decrease in beclin-1 expression.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/fisiologia , Infarto do Miocárdio , Miócitos Cardíacos , Animais , Apoptose , Autofagia , Proteína Beclina-1 , Histona Desacetilases , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Remodelação Ventricular
14.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291408

RESUMO

In this work, we studied the CO2 absorption mechanism by nonaqueous solvent comprising hindered amine 2-[(1,1-dimethylethyl)amino]ethanol (TBAE) and ethylene glycol (EG). The NMR and FTIR results indicated that CO2 reacted with an -OH group of EG rather than the -OH of TBAE by producing hydroxyethyl carbonate species. A possible reaction pathway was suggested, which involves two steps. In the first step, the acid-base reaction between TBAE and EG generated the anion HO-CH2-CH2-O-; in the second step, the O- of HO-CH2-CH2-O- attacked the C atom of CO2, forming carbonate species.


Assuntos
Aminas/química , Dióxido de Carbono/química , Etanol/química , Etilenoglicol/química , Solventes/química , Íons/química , Espectroscopia de Ressonância Magnética/métodos
15.
Chem Commun (Camb) ; 55(83): 12483-12486, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566632

RESUMO

The non-aqueous solvent formed by 2-piperidineethanol (2-PE) and ethylene glycol (EG) exhibited a high CO2 capacity of up to 0.97 mol CO2 per mol amine at 25 °C and 1.0 atm and a low regeneration temperature of 50 °C, indicating the low energy consumption in the regeneration process. Surprisingly, CO2 directly reacted with EG by forming a carbonate species, proved by FTIR and NMR results.

16.
Chem Commun (Camb) ; 55(10): 1426-1429, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30643916

RESUMO

Deep eutectic solvents formed by solid azolide ionic liquids and ethylene glycol (EG) can efficiently capture CO2. Surprisingly, NMR and FTIR results indicated that CO2 reacted with the -OH group of EG to form a carbonate species rather than reacting with azolide anions to form a carbamate species during the absorption process.

18.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3459-3467, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076960

RESUMO

WNT pathways are critically involved in the cardiac hypertrophy growth. Porcupine, an acyltransferase that specifically enables secretion of all WNT ligands, became a highly druggable target for inhibiting WNT pathways. Here we test if a novel small-molecule porcupine inhibitor CGX1321, which has entered human clinical trials as an anti-cancer agent, exerts an anti-hypertrophic effect. Transverse aortic constriction (TAC) was performed to induce cardiac hypertrophy on four-month-old male C57 mice. Cardiac function was measured with echocardiography. Histological analysis was performed to detect cardiomyocyte size and molecular expressions. CGX1321 was administrated daily for 4 weeks post TAC injury. As a result, CGX1321 improved cardiac function and animal survival of post-TAC mice. CGX1321 significantly reduced cardiomyocyte hypertrophy, cardiomyocyte apoptosis and fibrosis induced by TAC injury. CGX1321 significantly inhibited TAC induced nuclear translocation of ß-catenin and the elevation of Frizzled-2, cyclin-D1 and c-myc expression, indicating its inhibitory effect on canonical WNT pathway. Furthermore, CGX1321 inhibited TAC induced nuclear translocation of nuclear factor of activated T-cells and the elevation of phosphorylated c-Jun expression, suggesting its inhibitory function on non-canonical WNT pathway. We conclude that CGX1321 inhibits both canonical and non-canonical WNT pathways, and attenuates cardiac hypertrophy. Our findings support the porcupine inhibitors as a class of new drugs to be potentially used for treating patients with cardiac hypertrophy.


Assuntos
Aciltransferases/antagonistas & inibidores , Cardiomegalia/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/genética , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Transporte Proteico , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos
19.
Phys Chem Chem Phys ; 20(22): 15168-15173, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29789817

RESUMO

Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.

20.
Clin Sci (Lond) ; 131(24): 2919-2932, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162747

RESUMO

After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Antígeno Ki-67/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Fatores de Tempo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...