Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 44696, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304395

RESUMO

Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Increasing gas pressure during tests reduces gas slippage effect, but it also decreases the effective stress which in turn influences the permeability. The coupled effect of gas slippage and effective stress on shale permeability remains unclear. Here we perform laboratory experiments on Longmaxi shale specimens to explore the coupled effect. We use the pressure transient method to measure permeability under different stress and pressure conditions. Our results reveal that the apparent measured permeability is controlled by these two competing effects. With increasing gas pressure, there exists a pressure threshold at which the dominant effect on permeability switches from gas slippage to effective stress. Based on the Klinkenberg model, we propose a new conceptual model that incorporates both competing effects. Combining microstructure analysis, we further discuss the roles of stress, gas pressure and water contents on gas permeability of shale.

2.
Appl Bionics Biomech ; 2015: 609132, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27019590

RESUMO

In order to understand the fracture mechanisms of bone subjected to external force well, an experimental study has been performed on the bovine bone by carrying out the three-point bending test with 3D digital image correlation (DIC) method, which provides a noncontact and full field of displacement measurement. The local strain and damage evolution of the bone has been recorded real time. The results show that the deflection measured by DIC agrees well with that obtained by the displacement sensor of the mechanical testing machine. The relationship between the deflection and the force is nearly linear prior to reaching the peak strength which is about 16 kN for the tested bovine tibia. The full-field strain contours of the bone show that the strain distribution depends on not only the force direction, but also the natural bone shape. The natural arched-shape bovine tibia bone could bear a large force, due to the tissue structure with high strength, and the fracture propagation process of the sample initiates at the inner side of the bone first and propagates along the force direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...