Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 12523, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131244

RESUMO

The North China craton (NCC) was dominated by tectonic extension from late Cretaceous to Cenozoic, yet seismic studies on the relationship between crust extension and lithospheric mantle deformation are scarce. Here we present a three dimensional radially anisotropic model of NCC derived from adjoint traveltime tomography to address this issue. We find a prominent low S-wave velocity anomaly at lithospheric mantle depths beneath the Taihang Mountains, which extends eastward with a gradually decreasing amplitude. The horizontally elongated low-velocity anomaly is also featured by a distinctive positive radial anisotropy (VSH > VSV). Combining geodetic and other seismic measurements, we speculate the presence of a horizontal mantle flow beneath central and eastern NCC, which led to the extension of the overlying crust. We suggest that the rollback of Western Pacific slab likely played a pivotal role in generating the horizontal mantle flow at lithospheric depth beneath the central and eastern NCC.

4.
Sci Bull (Beijing) ; 64(5): 321-330, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659596

RESUMO

Full waveform inversion (FWI) has been increasingly more and more important in seismology to better understand the interior structure of the Earth. FWI, by taking advantage of both the traveltime and amplitude in the data, provides high-resolution model parameters of the earth which can produce images with high resolution. However, this inversion method conventionally suffers from non-uniqueness due to many local minima of the objective function and large computing costs. In this study, we propose a new FWI method in a semi-random framework by integrating the ensemble Kalman filter and uniform sampling without replacement. Numerical results demonstrate that the new method can achieve high-resolution results and a wider convergence domain. Accordingly, the new method overcomes the disadvantage of conventional FWIs that depend strongly on the initial model.

5.
Sci Bull (Beijing) ; 64(17): 1246-1254, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659605

RESUMO

The wave-induced fluid flow (WIFF) is considered to be the main cause of dispersion and attenuation of seismic waves in fluid-saturated porous media. Among numerous theories, the mesoscopic and microscopic heterogeneities are considered to be the primary mechanisms causing the WIFF. Furthermore, in most rocks, the mesoscopic and microscopic heterogeneities exist simultaneously and can cause obvious transitions of the fast P-wave velocity, which means it is necessary to consider the influence of the two mechanisms on the dispersion and attenuation simultaneously. Numerous results have shown that the dispersions and attenuations caused by these two mechanisms can be approximated in terms of the Zener model. To combine the two mechanisms into a unified model, we introduce a new generalized Zener model into the Biot poroelasticity theory to obtain a new poroviscoelastic model. Comparisons between the numerical results and two groups of experimental data further confirm the validity of our new model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...