Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(4): 5125-5132, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33478215

RESUMO

Power generation through the thermoelectric (TE) effect in small-sized devices requires a submillimeter-thick film that is beneficial to effectively maintain ΔT compared with a micron-scale thin film. However, most TE thick films, which are fabricated using printing technologies, suffer from low electrical conductivity due to the porous structures formed after sintering of the organic binder-mixed TE ink. In this study, we report an n-type TE thick film fabricated through bar-coating of the edge-oxidized-graphene (EOG)-dispersed Bi2.0Te2.7Se0.3 (BTS) paste with copper dopants. We have found that EOG provides the conducting pathway for carriers through electrical bridging between the separated BTS grains in porous TE thick films. The simultaneous enhancement in electrical conductivity and the Seebeck coefficient of the EOG-bridged TE film result in a maximum power factor of 1.54 mW·m-1·K-2 with the addition of 0.01 wt % EOG. Furthermore, the single element made of an n-type EOG-bridged BTS exhibits a superior output power of 1.65 µW at ΔT = 80 K. These values are 5 times higher than those of bare BTS films. Our results clearly indicate that the utilization of EOG with a metal dopant exerts a synergistic effect for enhancing the electrical output performance of n-type TE thick films for thermal energy harvesters.

2.
Sci Rep ; 7(1): 14359, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085008

RESUMO

Hexagonal boron nitride-reinforced Inconel 718 (h-BN/IN718) composites were fabricated using a laser powder bed fusion (LPBF) technique to treat a nanosheet-micropowder precursor mixture prepared in a mechanical blending process. Tailoring the BN in IN718 enhanced the thermal resistance of the composites, thereby dampening the sharpness of the melting temperature peak at 1364 °C. This is because the presence of the BN reinforcement, which has a low coefficient of thermal expansion (CTE), resulted in a heat-blocking effect within the matrix. Following this lead, we found that the BN (2.29 g/cm3) was uniformly distributed and strongly embedded in the IN718 (8.12 g/cm3), with the lowest alloy density value (7.03 g/cm3) being obtained after the addition of 12 vol% BN. Consequently, its specific hardness and compressive strength rose to 41.7 Hv0.5 ·cm3/g and 92.4 MPa·cm3/g, respectively, compared to the unreinforced IN718 alloy with 38.7 Hv0.5 ·cm3/g and 89.4 MPa·cm3/g, respectively. Most importantly, we discovered that the wear resistance of the composite improved compared to the unreinforced IN718, indicated by a decrease in the coefficient of friction (COF) from 0.43 to 0.31 at 2400 s. This is because the BN has an exfoliated surface and intrinsically high sliding and lubricating characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...