Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746329

RESUMO

The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.

2.
Nat Commun ; 15(1): 2856, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565851

RESUMO

Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.


Assuntos
Tecido Adiposo Marrom , Piroptose , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(11): 1319-1325, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37987039

RESUMO

Objective: To investigate short-term effectiveness and clinical application advantages of orthopedic robot-assisted resection for osteoid osteoma compared with traditional open surgery. Methods: A retrospective analysis was conducted on clinical data of 48 osteoid osteoma patients who met the selection criteria between July 2022 and April 2023. Among them, 23 patients underwent orthopedic robot-assisted resection (robot-assisted surgery group), and 25 patients received traditional open surgery (traditional surgery group). There was no significant difference ( P>0.05) in gender, age, disease duration, lesion location and size, and preoperative visual analogue scale (VAS) score, and musculoskeletal tumor society (MSTS) score between the two groups. The surgical time, intraoperative blood loss, intraoperative lesion localization time, initial localization success rate, infection, and recurrence were recorded and compared. VAS scores before surgery and at 24 hours, 1, 3, 6, and 9 months after surgery and MSTS score before surgery and at 3 months after surgery were assessed. Results: All patients completed the surgery successfully, with no significant difference in surgical time between the two groups ( P>0.05). Compared to the traditional surgery group, the robot-assisted surgery group had less intraoperative blood loss, shorter lesion localization time, and shorter hospitalization time, with significant differences ( P<0.05). The initial localization success rate was higher in the robot-assisted surgery group than in the traditional surgery group, but the difference between the two groups was not significant ( P>0.05). All patients in both groups were followed up, with the follow-up time of 3-12 months in the robot-assisted surgery group (median, 6 months) and 3-14 months in the traditional surgery group (median, 6 months). The postoperative MSTS scores of both groups improved significantly when compared to those before surgery ( P<0.05), but there was no significant difference in the changes in MSTS scores between the two groups ( P>0.05). The postoperative VAS scores of both groups showed a gradually decreasing trend over time ( P<0.05), but there was no significant difference between the two groups after surgery ( P>0.05). During follow-up, except for 1 case of postoperative infection in the traditional surgery group, there was no infections or recurrences in other cases. There was no significant difference in the incidence of postoperative infection between the two groups ( P>0.05). Conclusion: Orthopedic robot-assisted osteoid osteoma resection achieves similar short-term effectiveness when compared to traditional open surgery, with shorter lesion localization time.


Assuntos
Neoplasias Ósseas , Osteoma Osteoide , Robótica , Humanos , Perda Sanguínea Cirúrgica , Osteoma Osteoide/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Complicações Pós-Operatórias , Neoplasias Ósseas/cirurgia
4.
Cells ; 12(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759504

RESUMO

Myocardial ischemia/reperfusion (I/R) elicits an acute inflammatory response involving complement factors. Recently, we reported that myocardial necrosis was decreased in complement C3-/- mice after heart I/R. The current study used the same heart model to test the effect of C3 on myocardial apoptosis and investigated if C3 regulation of apoptosis occurred in human cardiomyocytes. Comparative proteomics analyses found that cytochrome c was present in the myocardial C3 complex of WT mice following I/R. Incubation of exogenous human C3 reduced apoptosis in a cell culture system of human cardiomyocytes that did not inherently express C3. In addition, human C3 inhibited the intrinsic apoptosis pathway in a cell-free apoptosis system. Finally, human pro-C3 was found to bind with an apoptotic factor, pro-caspase 3, in a cell-free system. Thus, we present firsthand evidence showing that C3 readily reduces myocardial apoptosis via interaction with the intrinsic apoptotic pathway.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Humanos , Animais , Complemento C3/metabolismo , Complemento C3/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Apoptose , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia/metabolismo
5.
Mol Metab ; 64: 101548, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863637

RESUMO

OBJECTIVE: Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear. METHODS: We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms. RESULTS: Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure. CONCLUSIONS: Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.


Assuntos
Adipócitos Marrons , Ciclina C , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ciclina C/metabolismo , Lipídeos , Camundongos , Camundongos Knockout , Camundongos Transgênicos
6.
Infect Drug Resist ; 15: 3103-3109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747329

RESUMO

Objective: To retrospectively analyze if the use of topical intraoperative vancomycin powder reduces deep surgical site infection (DSSI) after posterior lumbar interbody fusion. Methods: All spinal surgeries for lumbar degenerative disease and underwent posterior fixation interbody fusion between January 2013 and December 2018 were reviewed. A total of 891 patients were included, of which 527 patients (treatment group) received intraoperatively topical vancomycin powder; the others were served as control group. The primary outcomes were the overall incidence of DSSI and the effect of vancomycin on its development. The secondary outcome was risk factors for DSSI. Data on the baseline characteristics, postoperative complications, perioperative risk factors, and one-year postoperative prognoses were extracted from the medical records. Results: A total of 20 patients met the diagnostic criteria for DSSI (2.24%), of which 7 patients (1.33%) in the treatment group and 13 patients (3.57%) in the control group. There was a significant difference in the incidence of DSSI between the groups (P = 0.026). Multivariate logistic regression analysis with stepwise backward elimination showed that the local use of vancomycin powder was an independent protective factor for DSSI (odds ratio (OR): 0.25, P = 0.01), whereas high body mass index (BMI) (OR: 1.21, P = 0.005), drinking (OR: 5.19, P = 0.005), urinary tract infections (OR: 4.49, P = 0.021), diabetes mellitus (OR: 4.32, P = 0.03), and blood transfusions (OR: 3.67, P = 0.03) were independent risk factors for DSSI. Conclusion: The intraoperative usage of vancomycin powder could reduce effectively decreases the incidence of DSSI after posterior lumbar interbody fusion for degenerative lumbar diseases. High BMI, diabetes mellitus, drinking, and urinary tract infections were independent risk factors for DSSI, whereas the local use of vancomycin protected against these factors.

7.
Physiol Genomics ; 53(11): 456-472, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643091

RESUMO

Excessive long-term consumption of dietary carbohydrates, including glucose, sucrose, or fructose, has been shown to have significant impact on genome-wide gene expression, which likely results from changes in metabolic substrate flux. However, there has been no comprehensive study on the acute effects of individual sugars on the genome-wide gene expression that may reveal the genetic changes altering signaling pathways, subsequent metabolic processes, and ultimately physiological/pathological responses. Considering that gene expressions in response to acute carbohydrate ingestion might be different in nutrient sensitive and insensitive mammals, we conducted comparative studies of genome-wide gene expression by deep mRNA sequencing of the liver in nutrient sensitive C57BL/6J and nutrient insensitive BALB/cJ mice. Furthermore, to determine the temporal responses, we compared livers from mice in the fasted state and following ingestion of standard laboratory mouse chow supplemented with plain drinking water or water containing 20% glucose, sucrose, or fructose. Supplementation with these carbohydrates induced unique extents and temporal changes in gene expressions in a strain specific manner. Fructose and sucrose stimulated gene changes peaked at 3 h postprandial, whereas glucose effects peaked at 12 h and 6 h postprandial in C57BL/6J and BABL/cJ mice, respectively. Network analyses revealed that fructose changed genes were primarily involved in lipid metabolism and were more complex in C57BL/6J than in BALB/cJ mice. These data demonstrate that there are qualitative and antitative differences in the normal physiological responses of the liver between these two strains of mice and C57BL/6J is more sensitive to sugar intake than BALB/cJ.


Assuntos
Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Animais , Carboidratos da Dieta/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ingestão de Alimentos , Jejum , Frutose/administração & dosagem , Frutose/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Especificidade da Espécie , Sacarose/administração & dosagem , Sacarose/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Mol Metab ; 48: 101227, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812059

RESUMO

OBJECTIVE: Liver glycogen levels are dynamic and highly regulated by nutrient availability as the levels decrease during fasting and are restored during the feeding cycle. However, feeding in the presence of fructose in water suppresses glycogen accumulation in the liver by upregulating the expression of the glucose-6-phosphatase catalytic subunit (G6pc) gene, although the exact mechanism is unknown. We generated liver-specific knockout MED13 mice that lacked the transcriptional Mediator complex kinase module to examine its effect on the transcriptional activation of inducible target gene expression, such as the ChREBP- and FOXO1-dependent control of the G6pc gene promoter. METHODS: The relative changes in liver expression of lipogenic and gluconeogenic genes as well as glycogen levels were examined in response to feeding standard low-fat laboratory chow supplemented with water or water containing sucrose or fructose in control (Med13fl/fl) and liver-specific MED13 knockout (MED13-LKO) mice. RESULTS: Although MED13 deficiency had no significant effect on constitutive gene expression, all the dietary inducible gene transcripts were significantly reduced despite the unchanged insulin sensitivity in the MED13-LKO mice compared to that in the control mice. G6pc gene transcription displayed the most significant difference between the Med13 fl/fl and MED13-LKO mice, particularly when fed fructose. Following fasting that depleted liver glycogen, feeding induced the restoration of glycogen levels except in the presence of fructose. MED13 deficiency rescued the glycogen accumulation defect in the presence of fructose. This resulted from the suppression of G6pc expression and thus G6PC enzymatic activity. Among two transcriptional factors that regulate G6pc gene expression, FOXO1 binding to the G6pc promoter was not affected, whereas ChREBP binding was dramatically reduced in MED13-LKO hepatocytes. In addition, there was a marked suppression of FOXO1 and ChREBP-ß transcriptional activities in MED13-LKO hepatocytes. CONCLUSIONS: Taken together, our data suggest that the kinase module of the Mediator complex is necessary for the transcriptional activation of metabolic genes such as G6pc and has an important role in regulating glycogen levels in the liver through altering transcription factor binding and activity at the G6pc promoter.


Assuntos
Domínio Catalítico/genética , Frutose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Glicogênio Hepático/biossíntese , Fígado/metabolismo , Complexo Mediador/metabolismo , Transdução de Sinais/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Ativação Enzimática/genética , Jejum , Frutose/farmacologia , Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Hepatócitos/metabolismo , Resistência à Insulina/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
Mol Cell Endocrinol ; 523: 111135, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359761

RESUMO

Elevated lipogenesis is an important metabolic hallmark of rapidly proliferating tumor such as endometrial carcinoma (EC). The sterol regulatory element-binding protein 1 (SREBP1) is a master regulator of lipogenesis and involved in EC proliferation. BF175 is a novel chemical inhibitor of SREBP pathway, and has shown potent anti-lipogenic effects. However, the effect of BF175 on EC cells are yet to be determined. In the present study, we found that BF175 decreased cell viability, colony formation and migratory capacity, inducing autophagy and mitochondrial related apoptosis in EC cell line AN3CA. Z-VAD-FMK partially attenuated the effect of BF175 on AN3CA. In addition, BF175 significantly downregulated SREBPs and their downstream genes. The levels of free fatty acids and total cholesterol were also inhibited. Microarray analysis suggested BF175 treatment obviously affected lipid metabolic pathways in EC. Taken together, we validated BF175 exhibited anti-tumor activity by targeting SREBP-dependent lipogenesis and inducing apoptosis which mitochondrial pathway involved in, suggesting that it's potential as a novel therapeutic reagent for EC.


Assuntos
Compostos de Boro/farmacologia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Redes e Vias Metabólicas , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco
10.
J Biol Chem ; 295(15): 4809-4821, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32075912

RESUMO

The liver maintains metabolic homeostasis by integrating the regulation of nutrient status with both hormonal and neural signals. Many studies on hepatic signaling in response to nutrients have been conducted in mice. However, no in-depth study is currently available that has investigated genome-wide changes in gene expression during the normal physiological fasting-feeding cycle in nutrient-sensitive and -insensitive mice. Using two strains of mice, C57BL/6J and BALB/cJ, and deploying deep RNA-Seq complemented with quantitative RT-PCR, we found that feeding causes substantial and transient changes in gene expression in the livers of both mouse strains. The majority of significantly changed transcripts fell within the areas of biological regulation and cellular and metabolic processes. Among the metabolisms of three major types of macronutrients (i.e. carbohydrates, proteins, and lipids), feeding affected lipid metabolism the most. We also noted that the C57BL/6J and BALB/cJ mice significantly differed in gene expression and in changes in gene expression in response to feeding. In both fasted and fed states, both mouse strains shared common expression patterns for about 10,200 genes, and an additional 400-600 genes were differentially regulated in one strain but not the other. Among the shared genes, more lipogenic genes were induced upon feeding in BABL/cJ than in C57BL/6J mice. In contrast, in the population of differentially enriched genes, C57BL/6J mice expressed more genes involved in lipid metabolism than BALB/cJ mice. In summary, these results reveal that the two mouse strains used here exhibit several differences in feeding-induced hepatic responses in gene expression, especially in lipogenic genes.


Assuntos
Biomarcadores/metabolismo , Ingestão de Alimentos , Jejum , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
11.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623194

RESUMO

The worldwide increase in type 2 diabetes (T2D) is becoming a major health concern, thus searching for novel preventive and therapeutic strategies has become urgent. In last decade, the paralogous transcription factors MondoA and carbohydrate response element-binding protein (ChREBP) have been revealed to be central mediators of glucose sensing in multiple metabolic organs. Under normal nutrient conditions, MondoA/ChREBP plays vital roles in maintaining glucose homeostasis. However, under chronic nutrient overload, the dysregulation of MondoA/ChREBP contributes to metabolic disorders, such as insulin resistance (IR) and T2D. In this review, we aim to provide an overview of recent advances in the understanding of MondoA/ChREBP and its roles in T2D development. Specifically, we will briefly summarize the functional similarities and differences between MondoA and ChREBP. Then, we will update the roles of MondoA/ChREBP in four T2D-associated metabolic organs (i.e., the skeletal muscle, liver, adipose tissue, and pancreas) in physiological and pathological conditions. Finally, we will discuss the opportunities and challenges of MondoA/ChREBP as drug targets for anti-diabetes. By doing so, we highlight the potential use of therapies targeting MondoA/ChREBP to counteract T2D and its complications.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Transdução de Sinais , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Biomarcadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Pâncreas/metabolismo
12.
J Biol Chem ; 294(34): 12743-12753, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31270208

RESUMO

The sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors best known for stimulating the expression of genes encoding key lipogenic enzymes. However, SREBP functions beyond lipid metabolism are less understood. Here, we show that hepcidin antimicrobial peptide (Hamp), encoding the hormone hepcidin essential for iron homeostasis and regulated by dietary iron and inflammation, is a target gene of the two SREBP isoforms SREBP-1a/c. We found that in tissue culture, mature, active, and nuclear forms of the SREBP-1a/c proteins induce endogenous Hamp gene expression and increase the Hamp promoter activity primarily via three regulatory sequences, including an E-box. Moreover, ChIP experiments revealed that SREBP-1a binds to the Hamp gene promoter. Overexpression of nuclear SREBP-1a under the control of the phosphoenolpyruvate carboxylase-1 (Pck1) promoter in mice increased hepatic Hamp mRNA and blood hepcidin levels, and as expected, caused fatty liver. Consistent with the known effects of Hamp up-regulation, SREBP-1a-overexpressing mice displayed signs of dysregulation in iron metabolism, including reduced serum iron and increased hepatic and splenic iron storage. Conversely, liver-specific depletion of the nuclear forms of SREBPs, as in SREBP cleavage-activating protein knockout mice, impaired lipopolysaccharide-induced up-regulation of hepatic Hamp Together, these results indicate that the SREBP-1a/c transcription regulators activate hepcidin expression and thereby contribute to the control of mammalian iron metabolism.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Lipídeos/química , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Cultivadas , Células HEK293 , Células Hep G2 , Humanos , Lipogênese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
13.
J Biol Chem ; 294(23): 9076-9083, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028171

RESUMO

The Mediator complex plays a critical role in the regulation of transcription by linking transcription factors to RNA polymerase II. By examining mouse livers, we have found that in the fasted state, the Mediator complex exists primarily as an approximately 1.2-MDa complex, consistent with the size of the large Mediator complex, whereas following feeding, it converts to an approximately 600-kDa complex, consistent with the size of the core Mediator complex. This dynamic change is due to the dissociation and degradation of the kinase module that includes the MED13, MED12, cyclin-dependent kinase 8 (CDK8), and cyclin C (CCNC) subunits. The dissociation and degradation of the kinase module are dependent upon nutrient activation of mTORC1 that is necessary for the induction of lipogenic gene expression because pharmacological or genetic inhibition of mTORC1 in the fed state restores the kinase module. The degradation but not dissociation of the kinase module depends upon the E3 ligase, SCFFBW7 In addition, genetically insulin-resistant and obese db/db mice in the fasted state displayed elevated lipogenic gene expression and loss of the kinase module that was reversed following mTORC1 inhibition. These data demonstrate that the assembly state of the Mediator complex undergoes physiologic regulation during normal cycles of fasting and feeding in the mouse liver. Furthermore, the assembly state of the Mediator complex is dysregulated in states of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Complexo Mediador/metabolismo , Obesidade/patologia , Animais , Núcleo Celular/metabolismo , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Nutrientes/administração & dosagem , Obesidade/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Ligases SKP Culina F-Box/deficiência , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
14.
IEEE Trans Cybern ; 49(5): 1944-1955, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29993706

RESUMO

Rescheduling is a necessary procedure for a flexible job shop when newly arrived priority jobs must be inserted into an existing schedule. Instability measures the amount of change made to the existing schedule and is an important metrics to evaluate the quality of rescheduling solutions. This paper focuses on a flexible job-shop rescheduling problem (FJRP) for new job insertion. First, it formulates FJRP for new job insertion arising from pump remanufacturing. This paper deals with bi-objective FJRPs to minimize: 1) instability and 2) one of the following indices: a) makespan; b) total flow time; c) machine workload; and d) total machine workload. Next, it discretizes a novel and simple metaheuristic, named Jaya, resulting in DJaya and improves it to solve FJRP. Two simple heuristics are employed to initialize high-quality solutions. Finally, it proposes five objective-oriented local search operators and four ensembles of them to improve the performance of DJaya. Finally, it performs experiments on seven real-life cases with different scales from pump remanufacturing and compares DJaya with some state-of-the-art algorithms. The results show that DJaya is effective and efficient for solving the concerned FJRPs.

15.
Nutrients ; 10(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274245

RESUMO

De novo lipogenesis (DNL) is a complex and highly regulated process in which carbohydrates from circulation are converted into fatty acids that are then used for synthesizing either triglycerides or other lipid molecules. Dysregulation of DNL contributes to human diseases such as obesity, type 2 diabetes, and cardiovascular diseases. Thus, the lipogenic pathway may provide a new therapeutic opportunity for combating various pathological conditions that are associated with dysregulated lipid metabolism. Hepatic DNL has been well documented, but lipogenesis in adipocytes and its contribution to energy homeostasis and insulin sensitivity are less studied. Recent reports have gained significant insights into the signaling pathways that regulate lipogenic transcription factors and the role of DNL in adipose tissues. In this review, we will update the current knowledge of DNL in white and brown adipose tissues with the focus on transcriptional, post-translational, and central regulation of DNL. We will also summarize the recent findings of adipocyte DNL as a source of some signaling molecules that critically regulate energy metabolism.


Assuntos
Tecido Adiposo/metabolismo , Homeostase , Lipogênese/fisiologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Receptores X do Fígado , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Transcrição Gênica
16.
Sci Rep ; 8(1): 6449, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691438

RESUMO

Hippo signaling pathway is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis and stem cell self-renewal. TAZ (transcriptional coactivator with the PDZ-binding motif) is a key downstream effector of the mammalian Hippo pathway. Here, using a transgenic mouse model with mammary-gland-specific expression of constitutively active TAZ, we found that TAZ induction in mammary epithelial cells was associated with an increase in mammary glandular size, which probably resulted from adipocyte hypertrophy. Consistent with its known oncogenic potential, we observed tumor formation in TAZ transgenic mice after administration of the carcinogen 7,12-dimethylbenzanthracene (DMBA) and demonstrated that tumorigenesis was reliant on the presence of TAZ. Our findings establish a previously unknown roles of TAZ in regulating both mammary gland morphogenesis as well as carcinogen-induced mammary tumor formation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Glândulas Mamárias Animais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Apoptose , Carcinogênese/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Feminino , Via de Sinalização Hippo , Humanos , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Transativadores , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
17.
J Biol Chem ; 293(17): 6623-6634, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29514980

RESUMO

Dysregulation of lipid metabolism is common in cancer cells, but the underlying mechanisms are poorly understood. Sterol regulatory element-binding proteins (SREBPs) stimulate lipid biosynthesis through transcriptional activation of lipogenic enzymes. However, SREBPs' roles and potential interacting partners in cancer cells are not fully defined. Using a biochemical approach, we found here that pyruvate kinase M2 (PKM2) physically interacts with the nuclear form of SREBP-1a (nBP1a), by binding to amino acids 43-56 in nBP1a. We also found that PKM2 activates SREBP target gene expression and lipid biosynthesis by stabilizing nBP1a proteins. Using a competitive peptide inhibitor to block the formation of the SREBP-1a/PKM2 complex, we observed that this blockade inhibited lipogenic gene expression. Of note, nBP1a phosphorylation at Thr-59 enhanced the binding to PKM2 and promoted cancer cell growth. Moreover, we show that PKM2 phosphorylates Thr-59 in vitro Lastly, in human patients with hepatocellular carcinoma, nBP1a phosphorylation at Thr-59 was negatively correlated with clinical outcomes. Together, our results reveal that nBP1a/PKM2 interaction activates lipid metabolism genes in cancer cells and that Thr-59 phosphorylation of SREBP-1a plays an important role in cancer cell proliferation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células , Lipogênese , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Hormônios Tireóideos/metabolismo , Células A549 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Células MCF-7 , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
18.
J Biol Chem ; 292(21): 8918-8932, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28351837

RESUMO

Brown adipose tissue is important for maintaining energy homeostasis and adaptive thermogenesis in rodents and humans. As disorders arising from dysregulated energy metabolism, such as obesity and metabolic diseases, have increased, so has interest in the molecular mechanisms of adipocyte biology. Using a functional screen, we identified cyclin C (CycC), a conserved subunit of the Mediator complex, as a novel regulator for brown adipocyte formation. siRNA-mediated CycC knockdown (KD) in brown preadipocytes impaired the early transcriptional program of differentiation, and genetic KO of CycC completely blocked the differentiation process. RNA sequencing analyses of CycC-KD revealed a critical role of CycC in activating genes co-regulated by peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Overexpression of PPARγ2 or addition of the PPARγ ligand rosiglitazone rescued the defects in CycC-KO brown preadipocytes and efficiently activated the PPARγ-responsive promoters in both WT and CycC-KO cells, suggesting that CycC is not essential for PPARγ transcriptional activity. In contrast, CycC-KO significantly reduced C/EBPα-dependent gene expression. Unlike for PPARγ, overexpression of C/EBPα could not induce C/EBPα target gene expression in CycC-KO cells or rescue the CycC-KO defects in brown adipogenesis, suggesting that CycC is essential for C/EBPα-mediated gene activation. CycC physically interacted with C/EBPα, and this interaction was required for C/EBPα transactivation domain activity. Consistent with the role of C/EBPα in white adipogenesis, CycC-KD also inhibited differentiation of 3T3-L1 cells into white adipocytes. Together, these data indicate that CycC activates adipogenesis in part by stimulating the transcriptional activity of C/EBPα.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Ciclina C/metabolismo , Ativação Transcricional , Células 3T3-L1 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ciclina C/genética , Humanos , Camundongos , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo
19.
Biophys Rep ; 2(2): 69-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018965

RESUMO

The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

20.
PLoS Biol ; 13(7): e1002207, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26222308

RESUMO

The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval-pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval-pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval-pupal transition.


Assuntos
Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Receptores de Esteroides/metabolismo , Animais , Animais Geneticamente Modificados , Ciclina C/genética , Quinase 8 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Ecdisteroides/biossíntese , Feminino , Privação de Alimentos , Regulação da Expressão Gênica , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...