Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6607): 751-755, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951702

RESUMO

Tough bioadhesion has important implications in engineering and medicine but remains challenging to form and control. We report an ultrasound (US)-mediated strategy to achieve tough bioadhesion with controllability and fatigue resistance. Without chemical reaction, the US can amplify the adhesion energy and interfacial fatigue threshold between hydrogels and porcine skin by up to 100 and 10 times. Combined experiments and theoretical modeling suggest that the key mechanism is US-induced cavitation, which propels and immobilizes anchoring primers into tissues with mitigated barrier effects. Our strategy achieves spatial patterning of tough bioadhesion, on-demand detachment, and transdermal drug delivery. This work expands the material repertoire for tough bioadhesion and enables bioadhesive technologies with high-level controllability.


Assuntos
Adesivos , Hidrogéis , Ondas Ultrassônicas , Animais , Pele , Suínos
2.
ChemSusChem ; 15(7): e202102535, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137539

RESUMO

Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.


Assuntos
Celulose , Lignina , Biomassa , Celulose/química , Quitina , Lignina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...