Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
3.
Front Cell Dev Biol ; 12: 1416115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887519

RESUMO

Cancer remains a significant global challenge, with escalating incidence rates and a substantial burden on healthcare systems worldwide. Herein, we present an in-depth exploration of the intricate interplay between cancer cell death pathways and tumor immunity within the tumor microenvironment (TME). We begin by elucidating the epidemiological landscape of cancer, highlighting its pervasive impact on premature mortality and the pronounced burden in regions such as Asia and Africa. Our analysis centers on the pivotal concept of immunogenic cell death (ICD), whereby cancer cells succumbing to specific stimuli undergo a transformation that elicits robust anti-tumor immune responses. We scrutinize the mechanisms underpinning ICD induction, emphasizing the release of damage-associated molecular patterns (DAMPs) and tumor-associated antigens (TAAs) as key triggers for dendritic cell (DC) activation and subsequent T cell priming. Moreover, we explore the contributions of non-apoptotic RCD pathways, including necroptosis, ferroptosis, and pyroptosis, to tumor immunity within the TME. Emerging evidence suggests that these alternative cell death modalities possess immunogenic properties and can synergize with conventional treatments to bolster anti-tumor immune responses. Furthermore, we discuss the therapeutic implications of targeting the TME for cancer treatment, highlighting strategies to harness immunogenic cell death and manipulate non-apoptotic cell death pathways for therapeutic benefit. By elucidating the intricate crosstalk between cancer cell death and immune modulation within the TME, this review aims to pave the way for the development of novel cancer therapies that exploit the interplay between cell death mechanisms and tumor immunity and overcome Challenges in the Development and implementation of Novel Therapies.

4.
Immun Ageing ; 21(1): 38, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877498

RESUMO

Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.

9.
Curr Alzheimer Res ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38808722

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of ß-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis. METHODS: In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors. RESULTS: We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes. CONCLUSION: This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.

17.
J Cancer ; 15(10): 3095-3113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706901

RESUMO

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is a common gynecologic tumor and patients with advanced and recurrent disease usually have a poor clinical outcome. Angiogenesis is involved in the biological processes of tumors and can promote tumor growth and invasion. In this paper, we created a signature for predicting prognosis based on angiogenesis-related lncRNAs (ARLs). This provides a prospective direction for enhancing the efficacy of immunotherapy in CESC patients. We screened seven OS-related ARLs by univariate and multivariate regression analyses and Lasso analysis and developed a prognostic signature at the same time. Then, we performed an internal validation in the TCGA-CESC cohort to increase the precision of the study. In addition, we performed a series of analyses based on ARLs, including immune cell infiltration, immune function, immune checkpoint, tumor mutation load, and drug sensitivity analysis. Our created signature based on ARLs can effectively predict the prognosis of CESC patients. To strengthen the prediction accuracy of the signature, we built a nomogram by combining signature and clinical features.

20.
J Cancer ; 15(9): 2788-2804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577592

RESUMO

Background: Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) account for a significant proportion of gynecological malignancies and represent a major global health concern. Globally, CESC is ranked as the fourth most common cancer among women. Conventional treatment of this disease has a less favorable prognosis for most patients. However, the discovery of early molecular biomarkers is therefore important for the diagnosis of CESC, as well as for slowing down their progression process. Methods: To identify differentially expressed genes strongly associated with prognosis, univariate Cox proportional hazard analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used. Using multiple Cox proportional hazard regression, a multifactorial model for prognostic risk assessment was then created. Results: The expression of biological clock-related genes, which varied considerably among distinct subtypes and were associated with significantly diverse prognoses, was used to categorize CESC patients. These findings demonstrate how the nomogram developed based on the 7-CRGs signature may assist physicians in creating more precise, accurate, and successful treatment plans that can aid CESC patients at 1, 3, and 5 years. Conclusions: By using machine learning techniques, we thoroughly investigated the impact of CRGs on the prognosis of CESC patients in this study. By creating a unique nomogram, we were able to accurately predict patient prognosis. At the same time, we showed new perspectives on the development of CESC and its treatment by analyzing the associations of the prognostic model with immunity, enrichment pathways, chemotherapy sensitivity, and so on. This research provides a new direction for clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...