Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280330

RESUMO

Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.


Assuntos
Neoplasias , Evasão Tumoral , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
2.
World J Clin Cases ; 11(27): 6327-6343, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37900230

RESUMO

BACKGROUND: Wuzhuyu decoction, a traditional Chinese medicinal formula, is effective in treating hepatocellular carcinoma (HCC). AIM: To explore the potential mechanism of action of Wuzhuyu decoction against HCC. METHODS: The active components of each Chinese herbal medicinal ingredient in Wuzhuyu decoction and their targets were obtained from the Traditional Chinese Medicine Database and Analysis Platform. HCC was used as a search query in GeneCards, Online Mendelian Inheritance in Man, Malacards, DisGeNET, Therapeutic Target Database, and Comparative Toxicogenomics Database. The overlapping targets of the Wuzhuyu decoction and HCC were defined, and then protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. CytoHubba was used to select hub genes, and their binding activities and key active components were verified using molecular docking. RESULTS: A total of 764 compounds, 77 active compounds, and 204 potential target genes were identified in Wuzhuyu decoction. For HCC, 9468 potential therapeutic target genes were identified by combining the results from the six databases and removing duplicates. A total of 179 overlapping targets of Wuzhuyu decoction and HCC were defined, including 10 hub genes (tumor necrosis factor, interleukin-6, AKT1, TP53, caspase-3, mitogen-activated protein kinase 1, epidermal growth factor receptor, MYC, mitogen-activated protein kinase 8, and JUN). There were six main active components (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, ß-carotene, and ß-sitosterol) that may act on hub genes to treat HCC in Wuzhuyu decoction. Kyoto Encyclopedia of Genes and Genomes enrichment analysis mainly involved the mitogen-activated protein kinase, p53, phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt, Janus kinase-signal transducer of activators of transcription, and Hippo signaling pathways. Further verification based on molecular docking results showed that the small molecule compounds (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, ß-carotene, and ß-sitosterol) contained in Wuzhuyu decoction generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. CONCLUSION: This study revealed that Wuzhuyu decoction may be a latent multicomponent, multitarget, and multipathway treatment for HCC. It provided novel insights for verifying the mechanism of Wuzhuyu decoction in the treatment of HCC.

3.
Front Immunol ; 14: 1213629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441069

RESUMO

Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Microambiente Tumoral , Linfócitos T , Neoplasias/terapia , Imunidade
4.
Front Genet ; 13: 916281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105108

RESUMO

Previous studies have demonstrated that TRIB3 is closely related to insulin resistance, metabolic disorders and vascular diseases. Recently, it was reported that a 33 bp variable number of tandem repeats (VNTR) located in the TRIB3 promoter could considerably alter its transcriptional activity. Nonetheless, whether the shift of TRIB3 transcriptional activity has the effect of inducing diabetic vascular complications is still unclear. Therefore, in our study, we aimed to explore the relationship between the TRIB3 33bp VNTR and diabetic vascular complications. The TRIB3 33bp VNTR polymorphisms were determined by PCR and Sanger sequencing, a total of 798 eligible Chinese patients with type 2 diabetes (T2DM) were included in our study and then evaluated with clinical data. After adjusting for age, gender, BMI, smoking history, drinking history and duration of diabetes, we found that the high number of 33 bp tandem repeats (repeats>8) was significantly associated with an increase in the risk of cerebrovascular diseases compared with the low number of 33 bp tandem repeats (repeats≤6) in patients with T2DM(OR 2.66, 95% CI 1.29-5.47, p = 0.008). The intermediate number of 33bp tandem repeats (6 < repeat≤8) was markedly associated with a decreased risk of diabetic retinopathy compared with the low number of tandem repeats (OR 0.65, 95% CI 0.46-0.91, p = 0.012). Adjusting for gender, age and BMI, there was a significant difference in DBP levels among patients with the number of different 33 bp tandem repeats (Low vs. Intermediate vs. High, 81.6 ± 12.8 vs. 79.8 ± 12.4 vs. 78.7 ± 12.6 mmHg; p = 0.045). Subgroup analysis found that TRIB3 VNTR was significantly correlated with the difference in systolic blood pressure (SBP) in T2DM patients taking ACEI/ARB drugs (Low vs. Intermediate vs. High, 146.27 ± 18.23 vs. 140.01 ± 19.91 vs. 140.77 ± 18.64 mmHg; p = 0.018). Our results indicated that TRIB3 promoter 33bp VNTR is related to vascular diseases in T2DM patients, and may serve as a new biomarker for individualized prevention and therapy of T2DM.

5.
Front Cell Dev Biol ; 9: 765578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917613

RESUMO

Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells with different consensus molecular subtypes (CMS). The advancements in single-cell RNA sequencing have facilitated the development of gene regulatory networks to decode key regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC patients by using single-cell RNA-sequencing data. CMS for all malignant cells were assigned using CMScaller. Gene set variation analysis showed pathway activity differences consistent with those reported in previous studies. Cell-cell communication analysis confirmed that CMS1 was more closely related to immune cells, and that monocytes and macrophages play dominant roles in the CRC tumor microenvironment. On the basis of the constructed gene regulation networks (GRNs) for each subtype, we identified that the critical transcription factor ERG is universally activated and upregulated in all CMS in comparison with normal cells, and that it performed diverse roles by regulating the expression of different downstream genes. In summary, molecular subtyping of single-cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene regulatory networks and identify critical regulators of CRC.

6.
Front Cardiovasc Med ; 8: 728976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34651026

RESUMO

Diabetic vascular complications are one of the main causes of death and disability. Previous studies have reported that genetic variation is associated with diabetic vascular complications. In this study, we aimed to investigate the association between GRB10 polymorphisms and susceptibility to type 2 diabetes mellitus (T2DM) vascular complications. Eight single nucleotide polymorphisms (SNPs) in the GRB10 gene were genotyped by MassARRAY system and 934 patients with type 2 diabetes mellitus (T2DM) were included for investigation. We found that GRB10 rs1800504 CC+CT genotypes were significantly associated with increased risk of coronary heart disease (CHD) compared with TT genotype (OR = 2.24; 95%CI: 1.36-3.70, p = 0.002). Consistently, levels of cholesterol (CHOL) (CC+CT vs. TT, 4.44 ± 1.25 vs. 4.10 ± 1.00 mmol/L; p = 0.009) and low density lipoprotein cholesterin (LDL-CH) (CC+CT vs. TT, 2.81 ± 1.07 vs. 2.53 ± 0.82 mmol/L; p = 0.01) in T2DM patients with TT genotype were significant lower than those of CC+CT genotypes. We further validated in MIHA cell that the total cholesterol (TC) level in GRB10-Mut was significantly reduced compared with GRB10-WT; p = 0.0005. Likewise, the reversed palmitic acid (PA) induced lipid droplet formation in GRB10-Mut was more effective than in GRB10-WT. These results suggest that rs1800504 of GRB10 variant may be associated with the blood lipids and then may also related to the risk of CHD in patients with T2DM.

7.
Ann Transl Med ; 9(15): 1253, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532390

RESUMO

BACKGROUND: Tribble pseudokinase 3 (TRIB3) plays a key role in regulating the malignancy of many tumors. This study examined its function in cancer cells and explored the potential mechanisms of action. METHODS: The expression of TRIB3 was examined in hepatocellular carcinomas (HCCs) using The Cancer Genome Atlas (TCGA) database. A TRIB3 lentivirus with a flag label was constructed and transfected into Huh7 and Hep3B human hepatoma cell lines to generate cells that stably overexpress TRIB3. A small interfering RNA (siRNA) was designed to knockdown TRIB3 mRNA in HepG2 and Huh7. Cell viability and cell colony formation assays were conducted. Flow cytometry was performed to assess the cell cycle in cells overexpressing TRIB3. Western blotting were performed to examine the expression of (Mitogen-activated protein kinase, MAPKK) (MEK), phosphorylated-MEK (p-MEK), extracellular signal-regulated kinase (ERK), and p-MEK in cells with TRIB3 knockdown. The correlation between TRIB3 and SMARCD3 was assessed using co-immunoprecipitation assays and immunofluorescence. RESULTS: TRIB3 was significantly overexpressed in advanced grade HCC tissues and was closely correlated with poor prognosis. TRIB3 overexpression promoted the cell growth and cell cycle but had little effect on migration capabilities in Huh7 and Hep3B cells. Conversely, knockdown of TRIB3 had slow down the cell growth in Huh7 and HepG2 cells detected by CCK8 and colony formation assay. The expression of MEK and ERK at both the protein and mRNA levels were downregulated when TRIB3 was knocked down. The protein expression of p-ERK and p-MEK were also downregulated upon TRIB3 silencing. SMARCD3 is a transcript factor that is belongs to the SWI/SNF complex and has been shown to regulate many genes. Indeed, co-immunoprecipitation assays demonstrated that TRIB3 interacts with SMARCD3 in the nucleus, suggesting that it may regulate TRIB3 in HCCs. CONCLUSIONS: This study demonstrated that TRIB3 promotes the malignancy of HCC cells and its expression may be a potential diagnostic biomarker for HCC progression.

8.
Eur J Pharm Sci ; 152: 105463, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668314

RESUMO

In this paper, we designed and synthesized two analog compounds M1 and T1 that have a Michael acceptor warhead. Although only slightly diversity existed in the structures of M1 and T1, their inhibitory activities against wild type epidermal growth factor receptor (EGFRWT) and T790M/L858R mutant epidermal growth factor receptor (EGFRT790M/L858R) were significant different. Thus, multiple computational approaches were applied to investigate the interactions between the compounds with EGFRWT and EGFRT790M/L858R in order to explore the effect of different compounds. The molecular docking and MD simulations were performed to study the intermolecular interactions between compounds and EGFR. The binding free energy revealed that M1-EGFRWT and M1-EGFRT790M/L858R complexes have stronger binding affinity compared with the corresponding T1-EGFRWT and T1-EGFRT790M/L858R complexes, respectively. And the binding free energy decompositions for each residue analysis indicated that the van der Waals interactions are the major contributor to enhance the compounds to bind with EGFR. In addition, covalent binding complexes of M1-EGFRWT and M1-EGFRT790M/L858R were constructed and studied. Moreover, quantum mechanics method was applied to investigate the reaction mechanism of covalent binding of the compound and EGFR. The results will provide the details of structural and energetic information to develop potent covalent EGFR inhibitors in the future.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Receptores ErbB/genética , Humanos , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia
9.
J Pharm Biomed Anal ; 188: 113400, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32554179

RESUMO

A novel small molecule tyrosine kinase inhibitor 6-[6-Amino-5-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-3-pyridyl]-1'-methylspiro[indoline-3,4'-piperidine]-2-one (SMU-B) had good activity against ALK (anaplastic lymphoma kinase) and ROS1 (c-ros oncogene 1) targets in non-small-cell lung cancer. The excellent bioactivity of SMU-B highlights the importance of determining its metabolic traits, which could provide meaningful information for further pharmacokinetic studies of SMU-B. In this work, we studied the metabolism of SMU-B in human liver microsomes. Three metabolites of SMU-B were identified by a quadrupole-time of flight tandem mass spectrometer (Q-TOF-MS), and the metabolic pathways of SMU-B were demethylation, dehydrogenation and oxidation. CYP3A4/5 was the principal isoform involved in SMU-B metabolism, as shown by chemical inhibition and recombination human enzyme studies. Additionally, a predication with a molecular docking model confirmed that SMU-B could interact with the active sites of CYP3A4 and CYP3A5. This study illuminates the metabolic profile of the anti-tumor drug SMU-B, which will accelerate its clinical use.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450 , Humanos , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas
10.
Eur J Med Chem ; 187: 111966, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869655

RESUMO

A new class of 2-amino-4-(1,2,4-triazol)pyridine derivatives were designed and synthesized as potent epidermal growth factor receptor inhibitors. In particular, compound 10c exhibited significant inhibitory against EGFRL858R/T790M, and also displayed potent anti-proliferative activity against non-small cell lung cancer cell line H1975. Besides, compound 10j showed potent inhibitory activity against glioblastoma cell line U87-EGFRvⅢ, which was at least 3-fold more potent than Osimertinib and 25-fold superior to Lazertinib. Moreover, molecular modeling and molecular dynamics simulations disclosed the binding model of the most active compound to the domain of EGFR. This contribution provides 2-amino-4-(1,2,4-triazol)pyridines as a new scaffold for EGFRT790M and/or EGFRvⅢ inhibitor.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química
11.
Bioorg Chem ; 88: 102914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991193

RESUMO

A highly efficient method has been developed for the one-pot synthesis of substituted 3-amino-1H-indole and 3-amino-1H-7-azaindole derivatives starting from ethyl 2-cyanophenylcarbamate/ethyl 3-cyanopyridin-2-ylcarbamate, and α-bromoketones in good to excellent yields. All newly synthesized analogues were screened for their antiproliferative activities against four cancer cell lines. The most promising compound 8v demonstrated 13-, 5-, and 1.4-fold improvement compared to fluorouracil in inhibiting HeLa, HepG2, and MCF-7 cell proliferation with IC50 values of 3.7, 8.0, and 19.9 µM, respectively. Furthermore, 8v induced significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. These encouraging findings indicate that the common 3-amino-1H-7-azaindole is a very favorable scaffold for the design of novel anticancer small-molecule drugs.


Assuntos
Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Indóis/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Compostos Aza/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Indóis/síntese química , Estrutura Molecular , Relação Estrutura-Atividade
12.
Future Med Chem ; 10(14): 1705-1720, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961337

RESUMO

The abnormal expression of c-ros oncogene1 receptor tyrosine kinase (ROS1) has been identified as clinically actionable oncogenic driver in non-small-cell lung cancer. Since crizotinib was approved by the US FDA for the treatment of advanced ROS1-positive non-small-cell lung cancer, ROS1 kinase has become a promising therapeutic target. Under the guidance of some advanced computer-assisted technologies, such as structure-based drug design, homology modeling and lipophilic efficiency parameters, several potent and selective inhibitors against wild-type and mutant ROS1 were designed and synthesized. In this article, we will review a series of scaffolds targeting ROS1 kinase from the hit-to-drug evolution strategies of their representative compounds and it is hoped that these design strategies would facilitate medicinal chemists to optimize the process of drug design.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/patologia , Crizotinibe/química , Crizotinibe/metabolismo , Crizotinibe/uso terapêutico , Desenho de Fármacos , Humanos , Neoplasias Pulmonares/patologia , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Piridinas/química , Piridinas/metabolismo , Piridinas/uso terapêutico
13.
ChemistryOpen ; 7(6): 447-456, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29928568

RESUMO

The peptide segment of prostatic acid phosphatase (PAP248-286) aggregates to form SEVI (semen-derived enhancer of virus infection) amyloid fibrils. These are characteristic seminal amyloids that have the ability to promote the effect of HIV infection. In this paper, we explore the binding of sulfonated compounds with PAP248-286 through an in silico study. Three derivatives of suramin, NF110, NF279, and NF340, are selected. All of these sulfonated molecules bind to PAP248-286 and alter the conformation of the peptide, even though they have various structures, sizes, and configurations. The compounds bind with PAP248-286 through multiple interactions, such as hydrogen-bonding interactions, hydrophobic interactions, π-π stacking interactions, and electrostatic interactions. However, NF110, which has an X-shaped configuration, has the highest binding affinity of the three derivatives investigated. We also perform surface plasmon resonance and a Congo red assay to validate the results. The interactions between PAP248-286 and the sulfonated compounds are proposed to depend on the orientations of the sulfonate groups and the specific configurations of the compounds instead of the number of sulfonate groups. NF110 molecules occupy the exposed binding sites of PAP248-286, blocking interactions between the peptides. Therefore, these compounds are important in inhibiting the aggregation of PAP248-286. Herein, we provide useful information to develop new efficient microbicides to antagonize seminal amyloid fibrils and to block HIV transmission.

14.
Bioorg Med Chem Lett ; 27(17): 3954-3958, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28789892

RESUMO

Based on our previous work, a series of novel 2-amino-7,8-dihydropteridin-6(5H)-one derivatives were designed and synthesized via a ring-closing strategy. Biological evaluation with four human cancer cell lines (BT549, T47D, MDA-MB-468, and MDA-MB-231) showed that most of these compounds possessed moderate to potent antiproliferative activities. The most promising compound 8-benzyl-2-(phenethylamino)-7,8-dihydropteridin-6(5H)-one (6q) possessing IC50 values of 7.75, 6.37, and 10.73µM against MDA-MB-468, T47D, and BT549, respectively, which were 49, 11, and 8 folds more active than the positive control fluorouracil. Moreover, fluorescence-activated cell sorting analysis revealed that compound 6q displayed a significant effect on G1 cell-cycle arrest in a concentration-dependent manner in T47D cells. The initial structure-activity relationship studies indicated that linker-length of amine chain in C-2 position of pyrimidine ring played a crucial role in modulating the antitumor activity, which could be of help in the rational design of dihydropteridin-6(5H)-ones as novel anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Pteridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pteridinas/síntese química , Pteridinas/química , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 125: 1098-1106, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27810596

RESUMO

Thirty-two novel 3-alkylsulfanyl-1,2,4-triazole derivatives, designed as cis-restricted combretastatin A-4 analogues, were synthesized and evaluated for their antiproliferative activities. The results indicated that analogue 20 showed more potent antiproliferative activities against PC-3 cell lines than positive control CA-4. Particularly, the most promising compound 25 displayed 5-fold improvement compared to CA-4 in inhibiting HCT116 cell proliferation with IC50 values of 1.15 µM. Further flow-activated cell sorting analysis revealed that compound 20 displayed a significant effect on G2/M cell-cycle arrest in a dose-dependent manner in PC-3 cells. From this study, analogues 20 and 25 were the most potent anti-cancer agents in this structural class, and were considered lead compounds for further development as anti-cancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Bibenzilas/química , Bibenzilas/farmacologia , Triazóis/química , Triazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 118: 161-9, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27128180

RESUMO

In order to discover new anticancer drug leads, a series of novel alkylamino pyrimidine derivatives were designed and synthesized based on our previous work via a ring-opening strategy. Biological evaluation with four human cancer cell lines (MDA-MB-231, A549, HepG2, and MCF-7) showed that most of these compounds possessed moderate to potent antiproliferative activities. The most promising compound 7w displayed a three-fold improvement compared with commercial anticancer drug fluorouracil in inhibiting HepG2 cell proliferation with IC50 value of 10.37 µM. Moreover, flow-activated cell sorting analysis suggested that compound 7w mainly arrested HepG2 cells in G2/M stage. Hence, it could serve as a promising lead for the design of novel anticancer small-molecule drugs.


Assuntos
Acetatos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirimidinas/química , Relação Estrutura-Atividade
17.
Chem Biol Drug Des ; 86(6): 1491-500, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26177395

RESUMO

A series of novel hybrids of indole-pyrimidine-containing piperazine moiety were designed, synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. The results indicated that most of these compounds possessed significant cytotoxic potency against four cancer cell lines, HT-29, A549, MDA-MB-231 and MCF-7. Particularly, the most promising compound 34 showed more potent and broad-spectrum cytotoxic activities with the IC50 values ranged from 5.01 to 14.36 µm against A549, MDA-MB-231 and MCF-7 cell lines. Meanwhile, 34 also displayed the most potent tubulin polymerization inhibitory activity with IC50 value of 11.2 µm. Furthermore, molecular docking analysis demonstrated 34 interacts and binds efficiently with the tubulin protein at the colchicine-binding site. It was worth noting that the compound did not affect the normal human embryonic kidney cells, HEK-293. These results suggest that this novel class of indole-pyrimidine hybrids may have potential to be developed as new a class of tubulin polymerization inhibitors.


Assuntos
Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Técnicas In Vitro , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Multimerização Proteica/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/química
18.
Eur J Med Chem ; 84: 127-34, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25016234

RESUMO

A series of novel 2,4-diaminopyrimidines containing piperidine and piperazine moieties were synthesized via an efficient one-pot methodology. The bioassay tests demonstrated that compounds 27 and 28 displayed much stronger antitumor activities against four human cancer cell lines (HepG2, A549, MDA-MB-231 and MCF-7) than positive control fluorouracil. Particularly, compound 28 showed a two-fold improvement compared to fluorouracil in inhibiting MDA-MB-231 and A549 cell proliferation with IC50 values of 7.46 and 12.78 µM, respectively. Further flow-activated cell sorting analysis revealed that the most promising compound 28 displayed a significant effect on G2/M cell-cycle arrest in a dose-dependent manner in MDA-MB-231 cells.


Assuntos
Antineoplásicos/farmacologia , Piperazinas/química , Piperidinas/química , Pirimidinas/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Piperazina , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 22(13): 4471-4, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22647723

RESUMO

A series of 3,4-disubstituted-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazoles and some novel 5,6-dihydro-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles bearing 3,4,5-trimethoxyphenyl moiety were synthesized and screened for their anticancer activity. The preliminary bioassay results indicated that compounds 14 and 16 showed much stronger cytotoxicity than Doxorubicin against HepG2 cell lines with IC(50) values of 0.58 and 3.17 µM, respectively. Meanwhile compound 16 also exhibited a broad spectrum of antitumor activity against MCF-7 and MKN45 with IC(50) values of 10.92 and 13.79 µM, respectively.


Assuntos
Antineoplásicos/síntese química , Tiadiazóis/química , Triazóis/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Conformação Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/toxicidade , Triazóis/síntese química , Triazóis/toxicidade
20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): o1854, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22719619

RESUMO

In the title compound, C(21)H(19)NO(3)S(2), the dihedral angles formed between the thia-zole ring and the adjacent benzene ring and the other benzene ring are 1.58 (3) and 76.48 (6)°, respectively. The crystal structure features a weak C-H⋯O inter-action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...