Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915213

RESUMO

BACKGROUND: Given the established genetic linkage between triggering receptors expressed on myeloid cells 2 (TREM2) and Alzheimer's disease (AD), an expanding research body has delved into the intricate role of TREM2 within the AD context. However, a conflicting landscape of outcomes has emerged from both in vivo and in vitro investigations. This study aimed to elucidate the multifaceted nuances and gain a clearer comprehension of the role of TREM2. METHODS: PubMed database was searched spanning from its inception to January 2022. The search criteria took the form of ("Alzheimer's disease" OR "AD") AND ("transgenic mice model" OR "transgenic mouse model") AND ("Triggering receptor expressed on myeloid cells" OR "TREM2"). Inclusion criteria consisted of the following: (1) publication of original studies in English; (2) utilization of transgenic mouse models for AD research; and (3) reports addressing the subject of TREM2. RESULTS: A total of 43 eligible articles were identified. Our analysis addresses four pivotal queries concerning the interrelation of TREM2 with microglial function, Aß accumulation, tau pathology, and inflammatory processes. However, the diverse inquiries posed yielded inconsistent responses. Nevertheless, the inconsistent roles of TREM2 within these AD mouse models potentially hinge upon factors such as age, sex, brain region, model type, and detection methodologies. CONCLUSIONS: This review substantiates the evolving understanding of TREM2's disease progression-dependent impacts. Furthermore, it reviews the interplay between TREM2 and its effects across diverse tissues and temporal stages.

2.
Mol Neurobiol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066402

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide. Dysregulation of various metabolism pathways may mediate the development of AD pathology and cognitive dysfunction. Variants of triggering receptor expressed on myeloid cells-2 (TREM2) are known to increase the risk of developing AD. TREM2 plays a role in AD development by maintaining cellular energy and biosynthesis, but the precise mechanism through which it accomplishes this is unknown. Metabolomic analysis of hippocampal tissue from APP/PS1 and APP/PS1-TREM2 knockout (KO) mice found that TREM2 KO was associated with abnormalities in several metabolism pathways, and the effect was particularly pronounced in lipid metabolism and glucose metabolism pathways. Consistently, transcriptomic analysis of these mice determined that most differentially expressed genes were involved in energy metabolism pathways. We screened seven differentially expressed genes in APP/PS1-TREM2 KO mice that may influence AD development by altering energy metabolism. Integrative analysis of the metabolomic and transcriptomic profiles showed that TREM2 may regulate lipid metabolism and sphingolipid metabolism by affecting lipoprotein lipase (LPL) expression, thereby influencing AD progression. Our results prompt further studies of the interactions among TREM2, LPL, glucolipid metabolism, and sphingolipid metabolism in AD to identify new diagnostic and treatment strategies.

3.
Cell Immunol ; 391-392: 104743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451918

RESUMO

The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.


Assuntos
Doença de Alzheimer , Humanos , Sistema Nervoso Central , Encéfalo , Barreira Hematoencefálica/patologia , Fatores de Risco
4.
Mol Neurobiol ; 60(2): 512-523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36318443

RESUMO

Synapses are bridges for information transmission in the central nervous system (CNS), and synaptic plasticity is fundamental for the normal function of synapses, contributing substantially to learning and memory. Numerous studies have proven that microglia can participate in the occurrence and progression of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), by regulating synaptic plasticity. In this review, we summarize the main characteristics of synapses and synaptic plasticity under physiological and pathological conditions. We elaborate the origin and development of microglia and the two well-known microglial signaling pathways that regulate synaptic plasticity. We also highlight the unique role of triggering receptor expressed on myeloid cells 2 (TREM2) in microglia-mediated regulation of synaptic plasticity and its relationship with AD. Finally, we propose four possible ways in which TREM2 is involved in regulating synaptic plasticity. This review will help researchers understand how NDDs develop from the perspective of synaptic plasticity.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Microglia/metabolismo , Doença de Alzheimer/patologia , Sistema Nervoso Central/metabolismo , Plasticidade Neuronal , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
5.
Mol Neurodegener ; 17(1): 40, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658903

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane immune receptor that is mainly expressed on microglia in the brain and macrophages in the periphery. Recent studies have identified TREM2 as a risk factor for Alzheimer's disease (AD). Increasing evidence has shown that TREM2 can affect lipid metabolism both in the central nervous system (CNS) and in the periphery. In the CNS, TREM2 affects the metabolism of cholesterol, myelin, and phospholipids and promotes the transition of microglia into a disease-associated phenotype. In the periphery, TREM2 influences lipid metabolism by regulating the onset and progression of obesity and its complications, such as hypercholesterolemia, atherosclerosis, and nonalcoholic fatty liver disease. All these altered lipid metabolism processes could influence the pathogenesis of AD through several means, including affecting inflammation, insulin resistance, and AD pathologies. Herein, we will discuss a potential pathway that TREM2 mediates lipid metabolism to influence the pathogenesis of AD in both the CNS and periphery. Moreover, we discuss the possibility that TREM2 may be a key factor that links central and peripheral lipid metabolism under disease conditions, including AD. This link may be due to impacts on the integrity of the blood-brain barrier, and we introduce potential pathways by which TREM2 affects the blood-brain barrier. Moreover, we discuss the role of lipids in TREM2-associated treatments for AD. We propose some potential therapies targeting TREM2 and discuss the prospect and limitations of these therapies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/patologia , Humanos , Metabolismo dos Lipídeos , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo
6.
Mol Psychiatry ; 27(7): 2999-3009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484239

RESUMO

The embryonic ectoderm development (EED) is a core component of the polycomb-repressive complex 2 (PRC2) whose mutations are linked to neurodevelopmental abnormalities, intellectual disability, and neurodegeneration. Although EED has been extensively studied in neural stem cells and oligodendrocytes, its role in microglia is incompletely understood. Here, we show that microglial EED is essential for synaptic pruning during the postnatal stage of brain development. The absence of microglial EED at early postnatal stages resulted in reduced spines and impaired synapse density in the hippocampus at adulthood, accompanied by upregulated expression of phagocytosis-related genes in microglia. As a result, deletion of microglial Eed impaired hippocampus-dependent learning and memory in mice. These results suggest that microglial EED is critical for normal synaptic and cognitive functions during postnatal development.


Assuntos
Microglia , Células-Tronco Neurais , Animais , Hipocampo/metabolismo , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...